Answer:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. The total momentum of the trolleys after separation is zero
c. The momentum of the 2 kg trolley after separation is 12 kg·m/s
d. The momentum of the 3 kg trolley is -12 kg·m/s
e. The velocity of the 3 kg trolley = -4 m/s
Explanation:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0
c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s
d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s
e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley
∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s
The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s
Answer:
Gay Lussac law
Explanation:
Gay Lussac law states that for a gas kept at constant volume (so, in a rigid container), the pressure of the gas is directly proportional to the absolute temperature.
In mathematical formula:

where
p is the gas pressure
T is the absolute temperature
According to this law, we see therefore that if the absolute temperature of the gas is doubled:
T' = 2T
The pressure will also double:

Answer:
The charge stored in a parallel plate capacitor is proportional to the potential, and capacitance across the plates.
Explanation:
The capacitance of a parallel plate capacitor is given by:

where
Q is the charge stored
V is the potential difference across the capacitor
Re-arranging the formula, we get

From this expression, we see that the charge stored (Q) is proportional to both the potential (V) and the capacitance (C).
Answer:
3.5434 eV
Explanation:
For a particle with kinetic energy E and mass m , the wavelength associated is given by the following relation,

E = 
Putting the values we get
E = 
=1.063 x 10⁻²¹ J
= .0066 eV.
Energy of¹light in terms of eV
= 1244 / 350 = 3.55 eV.
Work function = 3.55 - 0.0066 = 3.5434 eV.