The De Broglie's wavelength of a particle is given by:

where
is the Planck constant
p is the momentum of the particle
In this problem, the momentum of the electron is equal to the product between its mass and its speed:

and if we substitute this into the previous equation, we find the De Broglie wavelength of the electron:

So, the answer is True.
Refraction occurs when a wave enters a new medium and changes its speed.
i hope this helps
Answer:


Explanation:
m = Mass of each the cars = 
= Initial velocity of first car = 3.46 m/s
= Initial velocity of the other two cars = 1.4 m/s
v = Velocity of combined mass
As the momentum is conserved in the system we have

Speed of the three coupled cars after the collision is
.
As energy in the system is conserved we have

The kinetic energy lost during the collision is
.
Answer:
Yes
Explanation:
An object can be moving (have kinetic energy) and be elevated above the ground at the same time (and also have potential energy).
Solution :
Given weight of Kathy = 82 kg
Her speed before striking the water,
= 5.50 m/s
Her speed after entering the water,
= 1.1 m/s
Time = 1.65 s
Using equation of impulse,

Here, F = the force ,
dT = time interval over which the force is applied for
= 1.65 s
dP = change in momentum
dP = m x dV
![$= m \times [V_f - V_o] $](https://tex.z-dn.net/?f=%24%3D%20m%20%5Ctimes%20%5BV_f%20-%20V_o%5D%20%24)
= 82 x (1.1 - 5.5)
= -360 kg
∴ the net force acting will be


= 218 N