The time taken for him to move the bin 6.5 m is 2.30 s.
The given parameters;
- <em>weight of the load, w = 557 N</em>
- <em>force applied , F = 410 N</em>
- <em>angle of force, = 15°</em>
- <em>coefficient of kinetic friction = 0.46</em>
- <em>distance moved, d = 6.5 m</em>
The net horizontal force on the recycling bin is calculated as follows;

where;
- <em>m is the mass of the recycling bin</em>
- <em />
<em> is the frictional force </em>
W = mg

The net horizontal force on the recycling bin is calculated as;

The time taken for him to move the bin 6.5 m is calculated as follows;

Thus, the time taken for him to move the bin 6.5 m is 2.30 s.
Learn more here:brainly.com/question/21684583
The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than the liquid it is placed in. An object will sink if it is more dense than the liquid it is placed in.
So since the boat has a lower density than the water, it will float.
So the answer is choice B
Answer:
D) 763 nm
Explanation:
Calculation for the wavelength of light
Using this formula
Wavelength of light=Delta Y*Distance / Length
Where,
Delta Y represent the 2nd order bright fringe
Length represent the distance between both the slits and the screen
Distance represent the Distance between the slits
Let note that cm to m = (4.2) x 10^-2 and mm to m= ( 0.0400x 10^-3)
Now Let plug in the formula
Wavelength of light=[(4.2 x 10^-2m)(0.0400 x 10^-3m) / 2(1.1m)]*10^-7 meters
Wavelength of light=[(0.042m) (0.0004m)/2.2m]*10^-7 meters
Wavelength of light =(0.0000168m/2.2m)*10^-7 meters
Wavelength of light =7.63 *10^-7 meters
Wavelength of light =763 nm
Therefore the Wavelength of light will be 763 nm
Electromagnets can be turned off, this makes it easier to release things from the magnetic field.
Hope this helps :)
Answer:
Though you have not gave the choices, I do believe it is “testing”
Explanation: