Answer: 12.56 / 4 = 3.1416 =9.4248
Step-by-step explanation: pi by the 2 squared gives u the area of all the circle but u need to fin 3/4 of the circle so divide by 4 and the result of the dividion x 3 gives u the answer
Answer:
a)0.08 , b)0.4 , C) i)0.84 , ii)0.56
Step-by-step explanation:
Given data
P(A) = professor arrives on time
P(A) = 0.8
P(B) = Student aarive on time
P(B) = 0.6
According to the question A & B are Independent
P(A∩B) = P(A) . P(B)
Therefore
&
is also independent
= 1-0.8 = 0.2
= 1-0.6 = 0.4
part a)
Probability of both student and the professor are late
P(A'∩B') = P(A') . P(B') (only for independent cases)
= 0.2 x 0.4
= 0.08
Part b)
The probability that the student is late given that the professor is on time
=
=
= 0.4
Part c)
Assume the events are not independent
Given Data
P
= 0.4
=
= 0.4
![P](https://tex.z-dn.net/?f=P)
= 0.4 x P![({B}')](https://tex.z-dn.net/?f=%28%7BB%7D%27%29)
= 0.4 x 0.4 = 0.16
= 0.16
i)
The probability that at least one of them is on time
= 1-
= 1 - 0.16 = 0.84
ii)The probability that they are both on time
P
= 1 -
= 1 - ![[P({A}')+P({B}') - P({A}'\cap {B}')]](https://tex.z-dn.net/?f=%5BP%28%7BA%7D%27%29%2BP%28%7BB%7D%27%29%20-%20P%28%7BA%7D%27%5Ccap%20%7BB%7D%27%29%5D)
= 1 - [0.2+0.4-0.16] = 1-0.44 = 0.56
Hi there! The unit rate per carton is $4.
To find our answer we must divide the total cost by the total cartons bought.
$ 48 / 12 = $4
Isosceles triangle: two equal sides.
We have the following relationship:
root (32) = root (L ^ 2 + L ^ 2)
root (32) = root (2L ^ 2)
root (32) = Lraiz (2)
root (32) / root (2) = L
The surface area is:
Area of the base and top:
A1 = (1/2) * (root (32) / root (2)) * (root (32) / root (2))
A1 = (1/2) * (32/2)
A1 = (1/2) * (16)
A1 = 8
Area of the rectangles of equal sides:
A2 = (root (32) / root (2)) * (6)
A2 = 24
Rectangle area of different side:
A3 = (root (32)) * (6)
A3 = 33.9411255
The area is:
A = 2 * A1 + 2 * A2 + A3
A = 2 * (8) + 2 * (24) + (33.9411255)
A = 97.9411255
Round to the nearest tenth:
A = 97.9 cm
Answer:
The surface area of the triangular prism is:
A = 97.9 cm