Answer:
by adding water into the mix
Explanation:
this will dissolve the salt
Answer:
mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Explanation:
The partition coefficient of X between ethoxy ethane (ether) and water, K is given by the formula
K = concentration of X in ether/concentration of X in water
Partition coefficient, K(X) between ethoxy ethane and water = 40
Concentration of X in ether = mass(g)/volume(dm³)
Mass of X in ether = m g
Volume of ether = 50/1000 dm³ = 0.05 dm³
Concentration of X in ether = (m/0.05) g/dm³
Concentration of X in water = mass(g)/volume(dm³)
Mass of X in water left after extraction with ether = (5 - m) g
Volume of water = 1 dm³
Concentration of X in water = (5 - m/1) g/dm³
Using K = concentration of X in ether/concentration of X in water;
40 = (m/0.05)/(5 - m)
(m/0.05) = 40 × (5 - m)
(m/0.05) = 200 - 40m
m = 0.05 × (200 - 40m)
m = 10 - 2m
3m = 10
m = 10/3
m = 3.33 g of X
Therefore, mass of X extracted from the aqueous solution by 50 cm³ of ethoxy ethane = 3.33 g
Answer: Add more information please! Thanks!
Explanation:
Answer:
The correct answer is pOH= 11
Explanation:
From the aqueous acid-base equilibrium we know that
pH + pOH = 14
If we know pH, we can calculate pOH as follows:
pOH = 14 - pH
In this problem, the solution has a pH of 3, so:
pOH = 14 - 3 = 11
Answer: Tin (Sn)
Explanation: The electron configuration for tin (Sn) is shown in the picture. It's last electrons are:
5s^2 4d^10 5p^2
The valence electrons are in the 5th electron shell and include 2 each in the 5s and 5p orbitals.