Answer:
TT and Tt genotypes both expressed the tall phenotype because the T is dominant to t. Only the tt genotype expressed the short phenotype.
Explanation:
Hope this helped!
Answer:-3463 kJ and -3452kJ
Explanation:
ΔU is the change in internal energy of a system and its formula is;
ΔU = q + w
Where q represents heat transferred into or out of the system. Its value is positive when heat is transfer into the system and negative when heat is produced by the system.
W represents the work done on or by the system. Its value is positive when work is done on the system and negative when it is done by the system.
For the system in this question, we see that it produces heat which means heat is transferred out of the system, therefore the value of q is negative, it can also be seen that work is done by the system which means that w is also negative.
Therefore,
ΔU = -q-w
ΔU = -3452 kJ – 11kJ
= - 3463kJ
ΔH is the change in the enthalpy of a system and its formuls is;
ΔH = ΔU + Δ(PV)
By product rule Δ(PV) becomes ΔPV + PΔV
At constant pressure ΔP = 0. Therefore,
ΔH = -q-w + PΔV
w is equals to PΔV, So:
ΔH = -q
ΔH = -3452kJ
If the angle is either 0 or 180, that means that there is either negative or positive work, so A and D are not correct.
If the angle is 45, then there is still some work involved.
The only option where there is no work done by a force is B. when the angle is between the force and displacement is 90.
When water at 50 C is added to ice at -12 C, heat is transferred from hot water to ice.
- Heat given out by water = Heat absorbed by ice
Calculating the heat released by hot water:
ΔT

Calculating heat absorbed by 16 g of ice: Ice at
is converted to ice at
and then ice at
to water at 
ΔT + 
+ 
q = 405.12 J +5336.8 J =5741.92 J
- Heat given out by water = Heat absorbed by ice
-(
m = 27.4 g
Therefore, 27.4 g water at
must be added to 16 g of ice at
to convert to liquid water at 
Answer:
Can you send the picture of this question