Answer:
₁₁A
Explanation:
Atomic radius
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons.
This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases.
So in given elements consider A₁₁, B₁₂, C₁₃ ans D₁₇ as sodium, magnesium, aluminium and chlorine. This is the third period and as we move form sodium to chlorine atomic radius decreases. That's why sodium has greater size.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased
Answer:
CH3CHO+H2O → CH3OCH3 - addition
CH,CICH CI + Zn → C2H4 + ZnCl2 - elimination
CH3CH3Br + OH – CH3CH3OH + Br - substitution
2CH2COOH >>(CH3CO)20 + H20 - condensation
Explanation:
An addition reaction is a reaction in which a specie is added across the double bond as we can see in CH3CHO+H2O → CH3OCH3.
In an elimination reaction, a small molecule is lost from a saturated compound to form the corresponding unsaturated compound as in CH,CICH CI + Zn → C2H4 + ZnCl2
In a substitution reaction, a chemical moiety replaces another in a molecule as in; CH3CH3Br + OH – CH3CH3OH + Br .
A condensation reaction is in which two molecules are joined together to form a bigger molecule as in; 2CH2COOH >>(CH3CO)20 + H20.
Answer:
Two covalent bonds form between the two oxygen atoms because oxygen requires two shared electrons to fill its outermost shell. Nitrogen atoms will form three covalent bonds (also called triple covalent) between two atoms of nitrogen because each nitrogen atom needs three electrons to fill its outermost shell.