Answer: I think it's D
Explanation: None of the other options are true.
<h2>Answer:</h2>
Rutherford's models
<h2>Explanations:</h2><h2>What is the electron cloud model?</h2>
There are known as the region where electrons are found especially in the nucleus.
According to the five basic atomic models which have contributed to the structure of the atom itself, the Rutherford's models of the atom include a structure that is mostly made of empty space compared to thomson that proposed the plum pudding model of the atom
The correct answer is: [C]: "polar" .
_____________________________________________________
" Water " ; which is: " H₂O " ;
_____________________________________________________
is a:
_____________________________________________________
— polar; → {eliminate: "Choice [A]: "non-polar"} ;
→ {and consider: "Choice: [C]: "polar" } ;
— covalent; → {not "ionic"; eliminate: "Choice: [B]: "ionic"} ;
— uncharged; → {neutral compound; not "charged" —but "balanced"} ;
→ {Note: " H ⁺ , O ²⁻ ; → " H₂O " } ;
→ The "charges" balance/ cancel out.
→ {eliminate: "Choice: [D]: "charged" .}.
_______________________________________________________
— compound.
_______________________________________________________
The correct answer is: [C]: "polar" .
_______________________________________________________
Answer:
Concentrated sulfuric acid can perform a dehydration reaction with table sugar. After mixing, the color changes from white to brownish and eventually to black. The expansion of the mixture is the result of vaporization of water and CO2 inside the container.
Answer:
Option e is correct
The heat required to increase the temperature of copper metal by 1 degree is 0.754 j
.
Explanation:
Given data:
specific heat of copper = 0.377 j/g.°C
Heat required to increase temperature = ?
Mass of copper = 2.00 g
Change in temperature = 1°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
Q = 2 g× 0.377 j/g.°C × 1°C
Q = 0.754 j
The heat required to increase the temperature of copper metal by 1 degree is 0.754 j
.