Answer:
Reaction 5: Decomposition reaction.
Reaction 6: Single replacement reaction
Reaction 7: Combination reaction.
Reaction 8: Combustion reaction.
Explanation:
<u><em>Reaction 5:</em></u> 2KClO₃ → 2KCl + 3O₂.
- It is a decomposition reaction.
- A decomposition reaction is a type of chemical reaction in which a single compound breaks down into two or more elements or new compounds.
- In this reaction: potassium chlorate decomposes into two single components (potassium chloride and oxygen).
- So, it is a decomposition reaction.
<u><em>Reaction 6:</em></u> Zn + 2HCl → H₂ + ZnCl₂.
- It is a single replacement reaction.
- A single-replacement reaction, a single-displacement reaction, is a reaction by which one (or more) element(s) replaces an/other element(s) in a compound.
- It is most often occur if element is more reactive than the other, thus giving a more stable product.
- In this reaction, zinc metal (more active) displaces the hydrogen to form hydrogen gas and zinc chloride, a salt. Zinc reacts quickly with the acid to form bubbles of hydrogen.
<u><em>Reaction 7:</em></u> N₂O₅ + H₂O → 2HNO₃.
- It is a combination "synthesis" reaction.
- A synthesis reaction has two or more reactants and only one product.
- In this reaction, dinitrogen pentoxide reacts with water to produce nitric acid.
- So, it is considered as a synthetic "combination" reaction.
<u><em>Reaction 8:</em></u> 2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O.
- It is a combustion reaction.
- A combustion reaction is a reaction where hydrocarbon alkane is completely burned in oxygen to produce water and carbon dioxide.
- In this reaction 1.0 mole of ethane is burned to give 4.0 moles of carbon dioxide and 6.0 moles of water.
- So, it is considered as a combustion reaction.
Explanation:
<u></u>
<u>-to determine how long ago two species of animals shared an ancestor</u>
<u></u>
The molecular lock describes a method which utilizes mutation rates for DNA over time, to determine the divergence of two species sharing common ancestry,due to evolution. Along with genetic drift, selective mating and natural selection, evolution may occur within populations due to spontaneous heritable changes to DNA, called mutations, over time.
Further Explanation:
During reproduction, other events, such as crossing over during mitosis and meiosis, mutations lead to increases in genetic variation. This variation refers to the genetic characteristics present within a species. Mutations may be either beneficial or deleterious; they are maintained within cells, as they form new traits called alleles. Beneficial mutations may confer traits that increase the fitness of a species, along with ensuring survival by conferring a protective advantage- these phenotypic differences between organisms are called adaptations.
Sequences of DNA make up genes which can have different forms called alleles. DNA, which makes up the genotype, is transcribed into mRNA and later translated into amino acids which are linked together by rRNA to form proteins which make up the phenotype of an organism. Mutations in DNA sequences affect the corresponding mRNA and thus the protein encoded.
Learn more about mutations at brainly.com/question/4602376
Learn more about DNA and RNA at brainly.com/question/2416343?source=aid8411316
#LearnWithBrainly
The volume of hydrogen gas that evolved is calculated as follows
by use of ideal gas equation
that is PV = nRT
P=745 mm hg
V= ?
R(gas constant)= 62.36 L.mm hg/mol.k
T= 20 + 273 = 293 k
n=number of moles which is calculated as follows
find the moles of Na used
= 0.52/23=0.023 moles
write the reacting equation
2Na +2H2O =2NaOH +H2
by use of reacting ratio between Na : H2 which is 2:1 therefore the mole of H2 = 0.023/2 =0.0115 moles
by making the volume the subject of the formula
v=nRT/P
V= (0.0115 x 62.36 x 293) / 745 = 0.283 L
Answer:
1.57 x 10⁷m
Explanation:
Given quantity is;
1.57 x 10¹⁴nm
Now;
1 nm = 10⁻⁹
So, let us convert this given quantity;
1 nm = 10⁻⁹
1.57 x 10¹⁴nm will give 1.57 x 10¹⁴ x 10⁻⁹ = 1.57 x 10⁷m