1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
13

A cylinder of radius R, length L, and mass M is released from rest on a slope inclined at angle θ. It is oriented to roll straig

ht down the slope. If the slope were frictionless, the cylinder would slide down the slope without rotating. What minimum coefficient of static friction is needed for the cylinder to roll down without slipping?

Physics
2 answers:
Oduvanchick [21]3 years ago
7 0

The minimum coefficient of static friction that needed for cylinder to roll down without slipping is \mu_s= \frac{tan\theta}{3}

<h3>Explanation: </h3>

A cylinder of radius R, length L, and mass M is released from rest on a slope inclined at angle θ. It is oriented to roll straight down the slope. If the slope were frictionless, the cylinder would slide down the slope without rotating. What minimum coefficient of static friction is needed for the cylinder to roll down without slipping?

Given: radius R, length L, angle θ, and mass  M

We need to calcuate the minimum static friction coefficient. It is useful so the cylinder will roll without slipping down the incline. The cylinder is also released from rest. As the cylinder is rolling, we have to consider the moment of inertia. Rolling of cylinder is happened due to the friction force

By applying Newton law of motion

F = M a\\\tau = I \alpha\\\tau = I \frac{a}{R} \\\tau = \frac{1}{2} M R^2 \frac{a}{R}

From diagram

Mg sin\theta - f_{fr} = Ma\\f_{fr} = \mu_s N\\f_{fr} = \mu_s Mg cos \theta\\a = g sin \theta -  \mu_s cos \theta

Then also

\tau = f_{fr} R\\f_{fr} = \frac{Ma}{2} \\\mu_s Mg cos \theta = \frac{Mg (sin\theta - \mu_s cos \theta)}{2} \\\frac{3}{2} \mu_s cos\theta = \frac{sin\theta}{2}\\  \mu_s = \frac{tan\theta}{3}

Learn more about coefficient of static friction brainly.com/question/13754413

#LearnWithBrainly

inna [77]3 years ago
3 0

Answer:

\mu_s=\frac{1}{3}\tan \theta

Explanation:

Let the minimum coefficient of static friction be \mu_s.

Given:

Mass of the cylinder = M

Radius of the cylinder = R

Length of the cylinder = L

Angle of inclination = \theta

Initial velocity of the cylinder (Released from rest) = 0

Since, the cylinder is translating and rolling down the incline, it has both translational and rotational motion. So, we need to consider the effect of moment of Inertia also.

We know that, for a rolling object, torque acting on it is given as the product of moment of inertia and its angular acceleration. So,

\tau =I\alpha

Now, angular acceleration is given as:

\alpha = \frac{a}{R}\\Where, a\rightarrow \textrm{linear acceleration of the cylinder}

Also, moment of inertia for a cylinder is given as:

I=\frac{MR^2}{2}

Therefore, the torque acting on the cylinder can be rewritten as:

\tau = \frac{MR^2}{2}\times \frac{a}{R}=\frac{MRa}{2}------ 1

Consider the free body diagram of the cylinder on the incline. The forces acting along the incline are mg\sin \theta\ and\ f. The net force acting along the incline is given as:

F_{net}=Mg\sin \theta-f\\But,\ f=\mu_s N\\So, F_{net}=Mg\sin \theta -\mu_s N-------- 2

Now, consider the forces acting perpendicular to the incline. As there is no motion in the perpendicular direction, net force is zero.

So, N=Mg\cos \theta

Plugging in N=Mg\cos \theta in equation (2), we get

F_{net}=Mg\sin \theta -\mu_s Mg\cos \theta\\F_{net}=Mg(\sin \theta-\mu_s \cos \theta)--------------3

Now, as per Newton's second law,

F_{net}=Ma\\Mg(\sin \theta-\mu_s \cos \theta)=Ma\\\therefore a=g(\sin \theta-\mu_s \cos \theta)------4

Now, torque acting on the cylinder is provided by the frictional force and is given as the product of frictional force and radius of the cylinder.

\tau=fR\\\frac{MRa}{2}=\mu_sMg\cos \theta\times  R\\\\a=2\times \mu_sg\cos \theta\\\\But, a=g(\sin \theta-\mu_s \cos \theta)\\\\\therefore g(\sin \theta-\mu_s \cos \theta)=2\times \mu_sg\cos \theta\\\\\sin \theta-\mu_s \cos \theta=2\mu_s\cos \theta\\\\\sin \theta=2\mu_s\cos \theta+\mu_s\cos \theta\\\\\sin \theta=3\mu_s \cos \theta\\\\\mu_s=\frac{\sin \theta}{3\cos \theta}\\\\\mu_s=\frac{1}{3}\tan \theta............(\because \frac{\sin \theta}{\cos \theta}=\tan \theta)

Therefore, the minimum coefficient of static friction needed for the cylinder to roll down without slipping is given as:

\mu_s=\frac{1}{3}\tan \theta

You might be interested in
Ele is playing with a ball in a bus that moves in a straight line with constant velocity What can you say about the motion of th
cupoosta [38]

Answer:

The ball will fall back and land to Elle's hands.

Explanation:

The bus move in a straight line with constant velocity means that there is no change of direction and no acceleration. Inertia can change the direction of the ball and acceleration can change its velocity. Since these two factors is not present in this scenario, the ball only has vertical movement. Thus the ball will land where it was thrown, in Elle's hands.

6 0
3 years ago
How would you find the average speed of a cyclist throughout an entire race
pishuonlain [190]
<span>Velocity, you divide distance/time </span>
4 0
3 years ago
Compare the energy consumption of two commonly used items in the household. Calculate the energy used by a 1.40 kW toaster oven,
andrew-mc [135]

Energy = (power) x (time)

-- <u>For the toaster:</u>

Power = 1.4 kW  =  1,400 watts

Time = 5.4 minutes = 324 seconds

Energy = (1,400 W) x (324 s)  =  453,600 Joules

-- <u>For the CFL bulb:</u>

Power = 11 watts

Time = 10.5 hours = 37,800 seconds

Energy = (11 W) x (37,800 s)  =  415,800 Joules

-- The toaster uses energy at 127 times the rate of the CFL bulb.

-- The CFL bulb uses energy at 0.0079 times the rate of the toaster.

-- The toaster is used for 0.0086 times as long as the CFL bulb.

-- The CFL bulb is used for 116.7 times as long as the toaster.    

-- The toaster uses 9.1% more energy than the CFL bulb.

-- The CFL bulb uses 8.3% less energy than the toaster.  

7 0
3 years ago
Alex places 2 cubes side-by-side on a ramp made of wood. Cube #1 is ice and Cube #2 is wood
zmey [24]

Answer:

Explanation:

The sandpaper block did not move because the forces of friction and gravity were balanced.

6 0
3 years ago
Landslides are primarily caused by -
alina1380 [7]

Answer:

Gravitational pull

Explanation:

There are four fundamental forces in nature:

- Gravitational force: it is an attractive force exerted between all objects having mass. Its magnitude is proportional to the product of the masses and inversely proportional to the square of the distance between the objects.

- Electromagnetic force: it is the force exerted between electrically charged object. It can be either attractive ore repulsive.  Its magnitude is proportional to the product of the charges and inversely proportional to the square of the distance between the objects.

- Strong nuclear force: it is the force responsible for holding protons and neutrons together in the nuclei of the atoms. It is attractive and acts only on a very short scale.

- Weak nuclear force: it is the force responsible for certain nuclear decay processes (radioactivity).

In this problem, landslides occur when certain masses of terrain are attracted towards the ground - they are attracted because of the gravitational force.

So, the correct answer is

gravitational pull

5 0
3 years ago
Other questions:
  • In order for exercise to be effective, it must substantially increase heart rate. True False
    15·2 answers
  • Solve the inequality. x/3 is greater than or equal to - 6. a. x ≥ –9 b. x ≥ 9 c. x ≥ –18 d. x ≤ –18
    10·1 answer
  • Max is gearing up for her lacrosse match. What safety measures can help Max stay safe for the big event?
    10·1 answer
  • What is the speed of a bobsled whose distance-time graph indicates that it traveled 114m in 30s? m/s
    13·1 answer
  • An element's atomic number is 13. How many protons would an atom of this element have?
    5·1 answer
  • How far (in meters) will you travel in 3 minutes running at a rate of 6 m/s?
    11·1 answer
  • Why would researchers not be allowed to recreate the Little Albert experiment today?
    15·1 answer
  • Describe the resultant force acting on an object if it is at rest or travelling at a constant velocity.
    7·1 answer
  • UV light has ______ wavelengths than visible light waves, and its peak energy is at a wavelength of ______.
    8·1 answer
  • Who was th efirst person to come up with the idea of the atoms.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!