Answer:
(a) The speed of the first particle is 1.75 m/s. The speed of the second particle is 6.9 m/s after the collision.
(b) The speed of the first particle is 3.45 m/s in the negative direction. The speed of the second particle is 1.73 m/s.
(c) The final kinetic energy of the incident particle in part (a) and part(b) is 0.0031 J and 0.011 J, respectively.
Explanation:
(a)
In an elastic collision, both momentum and energy is conserved.

Combining these equations will give the speed of the second particle.

We can use this to find the speed of the first particle.

(b)
If m_2 = 10g.


The minus sign indicates that the first particle turns back after the collision.
(c)
The final kinetic energy of the particle in part (a) and part (b) is
Answer:
well, as u can tell the top layer will always be the youngest layer aka the newest layer. The farther u go down the older the layers get. So the deeper u dig the farther back in time we see.
Explanation:
Complete Question
A parallel-plate capacitor, with air dielectric, is charged by a battery, after which the battery is disconnected. A slab of glass dielectric is then slowly inserted between the plates. As it is being inserted,
A :
a force repels the glass out of the capacitor.
B :
a force attracts the glass into the capacitor.
C :
no force acts on the glass.
D :
a net charge appears on the glass.
E :
the glass makes the plates repel each other.
Answer:
The correct option is B
Explanation:
Generally when the glass dielectric is slowly inserted between the plated,
The positive plate of the capacitor will induce a negative charge on the glass while the negative plate of the capacitor will induce a positive charge on glass which a electric field that posses an electric force that will attract the glass