2.05 × 10²³ formula units
Given data:Mass of AgF = 43.15 gNumber of formula units = ?Solution:Number of moles of AgF:Number of moles = mass/ molar massNumber of moles = 43.15 g/ 126.87 g/molNumber of moles = 0.34 molNow Number of formula units will be determine by using Avogadro number.It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.The number 6.022 × 10²³ is called Avogadro number1 mole = 6.022 × 10²³ formula units0.34 mol × 6.022 × 10²³ formula units2.05 × 10²³ formula units
Answer:
in an ancient
Explanation:
when the word begins with a vowel you say an instead of a
Answers:
A) 2040 kg/m³; B) 58 600 km
Explanation:
A) Density


<em>B) Radius</em>



![r= \sqrt [3]{ \frac{3V }{4 \pi } }](https://tex.z-dn.net/?f=r%3D%20%5Csqrt%20%5B3%5D%7B%20%5Cfrac%7B3V%20%7D%7B4%20%5Cpi%20%7D%20%7D)
![r= \sqrt [3]{ \frac{3\times 8.268 \times 10^{23} \text{ m}^{3}}{4 \pi } }= \sqrt [3]{ 1.974 \times 10^{23} \text{ m}^{3}}= 5.82 \times 10^{7} \text{ m}=\text{58 200 km}](https://tex.z-dn.net/?f=r%3D%20%5Csqrt%20%5B3%5D%7B%20%5Cfrac%7B3%5Ctimes%208.268%20%5Ctimes%2010%5E%7B23%7D%20%5Ctext%7B%20m%7D%5E%7B3%7D%7D%7B4%20%5Cpi%20%7D%20%7D%3D%20%5Csqrt%20%5B3%5D%7B%201.974%20%5Ctimes%2010%5E%7B23%7D%20%5Ctext%7B%20m%7D%5E%7B3%7D%7D%3D%205.82%20%5Ctimes%2010%5E%7B7%7D%20%5Ctext%7B%20m%7D%3D%5Ctext%7B58%20200%20km%7D)
Answer:
Explanation:
Ionic (or electrovalent) compounds conduct electricity when there they are in the aqueous state/solution because the charges of ions of these compounds are what carry the electric charges in the aqueous solution as a result of free movement within the aqueous solution which they do not "have" when in there solid state (where they have a highly restricted movement/compacted structure).