Answer:
Explanation:
Just as context, write the chemical equation and the mole ratios
1) <u>Balanced chemical equation</u>:
- CuO (s) + H₂SO₄ (aq) → CuSO₄ (aq) + H₂O (l)
2) <u>Therotetical (stoichiometric) mole ratios</u>:
- 1 mol CuO : 1 mol H₂SO₄ : 1 mol CuSO₄ : 1 mol H₂O
You can calculate the percent yield from the amount of CuSO₄ obtained and the theoretical yield
3) <u>Percent yield</u>
Percent yield = (actual yield / theoretical yield)×100
- Theoretical yiedl (given): 3.19 moles CuSO₄
- Actual yield (given): 2.50 moles CuSO₄
Substitute the values in the formula:
- Percent yield = (2.50 moles CuSO₄ / 3.19 moles CuSO₄)×100 = 78.4%
A variety of handheld and laboratoryinstruments is available for detectingand measuring radiation. ... Geiger Counter, with Geiger-Mueller (GM) Tube or Probe—A GM tube is a gas-filled device that, when a high voltage is applied, creates an electrical pulse when radiation interacts with the wall or gas in the tube.
From about 300ppm to about 377ppm :D
The mass of the empty flask is 17.4916 g. Now after feeling the ordinary water the mass of the flask is 43.9616 g. Thus the change of weight due to addition of ordinary water is (43.9616 - 17.4916) = 26.47 g.
Now as the density of the ordinary water at 20°C is 0.9982 g/ml, so 26.47 g is equivalent to
mL of water. Thus the capacity of the flask is 26.5177 mL.
Now the density of heavy water is 1.1053 g/mL at 20°C. Thus 26.5177 mL of heavy water is equivalent to (1.1053×26.5177) = 29.310 g.
Thus the total weight of the flask filled with heavy water will be (17.4916 + 29.310) = 46.8016 g at 20°C.