There are approximately 160 grams in 1 mol of Fe2O3 molecules. Therefore, there would be 79/160= 0.49375 mols of Fe2O3 molecules in 79 grams. There are 5 atoms in total for each molecule of Fe2O3, therefore 79/160 * 5 = 79/32 = 2.46875 mols of atoms.
The larger the kinetic energy of the vehicle, the larger the amount of energy will be needed to stop the vehicle, meaning that faster vehicles have a larger stopping distance
Answer:
The particles in the neutral paper can shift, causing the paper to become polarized and attracted to the rod.
Explanation:
The neutral paper has an even distribution of its electrons throughout the paper. If a charged rod is brought near the neutral paper, this can cause the electrons in the paper to shift. If the rod is negative, the electrons will be repelled from the rod and cause the molecules in the paper to have a slight positive charge on the part of the paper closest to the rod. If the rod is positive, the electrons will be attracted to the rod and cause a slight negative charge on the side of the paper closest to the rod.
J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. ... Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny, dense, positively-charged nucleus.