Answer:
Yes, the errors are likely to be relevant
Explanation:
A systematic error occurs as a result of the instrument used in carrying out and experiment. These errors are a result of small fluctuations in the measurement properties of the instrument. This happens when the instrument departs from non-ideal situations, for example as a result of physical expansion or change in temperature. For instance, let the resistance be measured to be up to 10 Ω ± 1 Ω
The error of the resistance, ε = 0.01Ω
Energy cannot be created nor be destroyed
Answer:
d = 421.83 m
Explanation:
It is given that,
Height, h = 396.9 m
Horizontal speed, v = 46.87 m/s
We need to find the distance traveled by the ball horizontally. Let t is the time taken by the ball. Using second equation of motion for vertical direction. So,

Now d is the distance covered by the cannonball. So,

Hence, this is the required solution.
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
Answer:
<em>The distance is now 4d</em>
Explanation:
<u>Mechanical Force</u>
According to the second Newton's law, the net force exerted by an external agent on an object of mass m is:
F = m.a
Where a is the acceleration of the object.
The acceleration can be calculated by solving for a:

Once we know the acceleration, we can calculate the distance traveled by the block as follows:

If the block starts from rest, vo=0:

Substituting the value of the acceleration:

Simplifying:

When a force F'=4F is applied and assuming the mass is the same, the new acceleration is:

And the distance is now:

Dividing d'/d:

Simplifying:

Thus:
d' = 4d
The distance is now 4d