Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
ANSWER and EXPLANATION
We want to identify if there will be an electric field and a magnetic field around the two sticks electrified by charges of opposite signs.
An electric field is a physical field that surrounds electrically charged particles and exerts a force on other charged particles in the surrounding.
This implies that the presence of electric charges on both sticks generates electric fields on them. Since the two charges are opposite, the electric force acting on them will be attractive.
Hence, there is an electric field.
A stationary charged object produces an electric field, as explained above, but will only produce a magnetic field if there is a motion of the object.
Hence, except the two sticks are caused to move, there will be no magnetic field around them.
In your question where as a golf ball is struck at a ground level and the speed of the ball as a function of time is in the figure where time t=0 and va = 16m/s and vb=32m/s. The following is the answer:
a) How far does the golf ball travel horizontally before returning to ground level?
-<span>80m</span>
<span>(b) What is the maximum height above ground level attained by the ball?
</span>-39.87m
Answer:
Tides are very long waves that move across the oceans. They are caused by the gravitational forces exerted on the earth by the moon, and to a lesser extent, the sun. ... Because the gravitational pull of the moon is weaker on the far side of the Earth, inertia wins, the ocean bulges out and high tide occurs.
Explanation:
Answer:
THE VOLUME OF GAS DECREASES AS THE ESCAPES OUT