A hypothesis is an educated guess. It's your own opinion!
The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
The answer is 24 (for the first question).
Explanation:
<h2><u><em>
PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
Answer:
Explanation:
initial angular velocity, ωo = 0 rad/s
angular acceleration, α = 30.5 rad/s²
time, t = 9 s
radius, r = 0.120 m
let the velocity is v after time 9 s.
Use first equation of motion for rotational motion
ω = ωo + αt
ω = 0 + 30.5 x 9
ω = 274.5 rad/s
v = rω
v = 0.120 x 274.5
v = 32.94 m/s