1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
2 years ago
9

What is the value of x? Enter your answer in the box. x =

Mathematics
1 answer:
qaws [65]2 years ago
7 0

Answer:

Step-by-step explanation: its yo mama :)

You might be interested in
HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP HELP I NEED HELP ASAP
Natali [406]

Answer:

D brainliest?

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
First question, thanks. I believe there should be 3 answers
zysi [14]

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

3 0
1 year ago
What is the answer to question 41
Nina [5.8K]

Answer:

an = 6 +5(n-1)

an = 1 +5n

Step-by-step explanation:

The equation for an arithmetic term is

an =a1 +d(n-1)

where a1 is the 1st term and d is the common difference

an = 6 +5(n-1)

We can distribute the 5

an = 6+5n-5

an = 1 +5n

4 0
3 years ago
Please help me answer this question
avanturin [10]

By <em>direct</em> substitution and simplification, the <em>trigonometric</em> function z = cos (2 · x + 3 · y) represents a solution of the <em>partial differential</em> equation  \frac{\partial^{2} t}{\partial x^{2}} - \frac{\partial^{2} t}{\partial y^{2}} = 5\cdot z.

<h3>How to analyze a differential equation</h3>

<em>Differential</em> equations are expressions that involve derivatives. In this question we must prove that a given expression is a solution of a <em>differential</em> equation, that is, substituting the variables and see if the equivalence is conserved.

If we know that z = \cos (2\cdot x + 3\cdot y) and \frac{\partial^{2} t}{\partial x^{2}} - \frac{\partial^{2} t}{\partial y^{2}} = 5\cdot z, then we conclude that:

\frac{\partial t}{\partial x} = -2\cdot \sin (2\cdot x + 3\cdot y)

\frac{\partial^{2} t}{\partial x^{2}} = - 4 \cdot \cos (2\cdot x + 3\cdot y)

\frac{\partial t}{\partial y} = - 3 \cdot \sin (2\cdot x + 3\cdot y)

\frac{\partial^{2} t}{\partial y^{2}} = - 9 \cdot \cos (2\cdot x + 3\cdot y)

- 4\cdot \cos (2\cdot x + 3\cdot y) + 9\cdot \cos (2\cdot x + 3\cdot y) = 5 \cdot \cos (2\cdot x + 3\cdot y) = 5\cdot z

By <em>direct</em> substitution and simplification, the <em>trigonometric</em> function z = cos (2 · x + 3 · y) represents a solution of the <em>partial differential</em> equation  \frac{\partial^{2} t}{\partial x^{2}} - \frac{\partial^{2} t}{\partial y^{2}} = 5\cdot z.

To learn more on differential equations: brainly.com/question/14620493

#SPJ1

3 0
2 years ago
2y + x = 6
Nimfa-mama [501]

B) The system of equations has a solution

4 0
3 years ago
Other questions:
  • What is the sum of 667 and 23?<br> a. 29<br> b. 15,341<br> c. 644<br> d. 690
    11·1 answer
  • What type of triangle has exactly two acute angles?
    11·1 answer
  • Mixed numbers between 5 and 7 with an interval of 1/3
    13·1 answer
  • What percent of $20,574.50 equals $1,180.47
    10·1 answer
  • Determine the total interest expense for 20Y1. Enter amount as a positive number.
    13·2 answers
  • What percent of 60 is 21?
    13·1 answer
  • Helpppp me please!!!!
    15·1 answer
  • I am looking for an answer key to a 10th grade online school Geometry video organizer. It's a 25 page packet. Attached is the fi
    11·1 answer
  • NEED ANSWER ASAP- FOR FINALS
    7·1 answer
  • A woman passed gas silently. I said "it stinks", and she said "I apologize. Excuse me". Why did she say both of those things?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!