Answer:
364.8 ft^2.
Step-by-step explanation:
I assume you want the area of the figure.
Total area = area of the top triangle + area of the trapezium
= 1/2 * base * height + 1/2 * height * ( sum of the parallel sides)
= 1/2 * 18 * 6 + (14/2)( 18 + 26.4)
= 54 + 310.8
= 364.8 ft^2.
8 is the gcf of 64 and 72
Answer:
- 1) y = 13.5x + 1
- 2) y = 12x + 4
- 3) Sam won the race
Step-by-step explanation:
<h3>Part 1</h3>
Sam's car is 1 ft in front of the start line and its speed is 13.5 ft/s.
<u>The distance after x seconds is:</u>
<h3>Part 2</h3>
Alice's car the speed 12 ft/s and after 3 seconds is 40 ft in front of the start line.
<u>The distance after x seconds is:</u>
- y = 12(x - 3) + 40 = 12x - 36 + 40 = 12x + 4
<h3>Part 3</h3>
<u>After 15 seconds the distance from the start line is:</u>
- Sam ⇒ y = 13.5*15 + 1 = 203.5 ft
- Alice ⇒ y = 12*15 + 4 = 184 ft
As we see Sam is further from the start line than Alice
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.
Answer:
It could be any fraction such as -1/2, -4/5,-20/50, -1/3, -5/11 ...
As long as the fraction is larger than -1 but smaller than 0 it will work
Step-by-step explanation: