Answer:
98,614.82 W/m²
Explanation:

Where;
Q = the amount of heat loss from the pipe
h = the heat transfer coefficient of the pipe = 50 W/m².K
T₁ = the ambient temperature of the pipe = 30⁰C
T₂ = the outside temperature of the pipe = 100⁰C
L= the length of pipe
r₁ = inner radius of the pipe = 20mm
r₂ = outer radius of the pipe = 25mm
To determine the amount of heat loss from the pipe per unit length
From the equation above



= 98,614.82 W/m²
Answer:
c) can be made with a variety of surface finishes.
Explanation:
The missing options are;
When it comes to concrete work in construction, the concrete can be cast either in-situ or in form of pre-cast concrete.
Now in-situ concrete means concrete done on the construction site being built while pre cast concrete simply means concrete cast outside in a factory or yard and brought to site to mount.
These pre cast concrete could have different surface finishes as required as this is one of it's advantages over in situ because there is a lot of space and room to have the desired concrete finish.
a) are typically manufactured on site and then hoisted into place.
b) cannot be fiber-reinforced.
c) can be made with a variety of surface finishes.
d) never include insulation.
e) often are unreinforced.
Answer:
Q = -68.859 kJ
Explanation:
given details
mass 
initial pressure P_1 = 104 kPa
Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K
final pressure P_2 = 1068 kPa
Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K
we know that
molecular mass of 
R = 8.314/44 = 0.189 kJ/kg K
c_v = 0.657 kJ/kgK
from ideal gas equation
PV =mRT






WORK DONE

w = 586*(0.1033 -0.514)
W =256.76 kJ
INTERNAL ENERGY IS



HEAT TRANSFER

= 187.902 +(-256.46)
Q = -68.859 kJ
That due to the specific tasks that needs to be accomplished by each program to make an all encompassing program would be inefficient and full of bugs