Answer:
Activation energy for creep in this temperature range is Q = 252.2 kJ/mol
Explanation:
To calculate the creep rate at a particular temperature
creep rate, 
Creep rate at 800⁰C, 

.........................(1)
Creep rate at 700⁰C


.................(2)
Divide equation (1) by equation (2)
![\frac{0.01}{5.5 * 10^{-4} } = \exp[\frac{-Q}{1073R} -\frac{-Q}{973R} ]\\18.182= \exp[\frac{-Q}{1073R} +\frac{Q}{973R} ]\\R = 8.314\\18.182= \exp[\frac{-Q}{1073*8.314} +\frac{Q}{973*8.314} ]\\18.182= \exp[0.0000115 Q]\\](https://tex.z-dn.net/?f=%5Cfrac%7B0.01%7D%7B5.5%20%2A%2010%5E%7B-4%7D%20%7D%20%3D%20%5Cexp%5B%5Cfrac%7B-Q%7D%7B1073R%7D%20-%5Cfrac%7B-Q%7D%7B973R%7D%20%5D%5C%5C18.182%3D%20%5Cexp%5B%5Cfrac%7B-Q%7D%7B1073R%7D%20%2B%5Cfrac%7BQ%7D%7B973R%7D%20%5D%5C%5CR%20%3D%208.314%5C%5C18.182%3D%20%5Cexp%5B%5Cfrac%7B-Q%7D%7B1073%2A8.314%7D%20%2B%5Cfrac%7BQ%7D%7B973%2A8.314%7D%20%5D%5C%5C18.182%3D%20%5Cexp%5B0.0000115%20Q%5D%5C%5C)
Take the natural log of both sides

Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.
Answer:
15.8
0.0944
Explanation:
L = 1.5
B = 1.0
Speed of water = 15cm
Temperature = 20⁰C
At 20⁰C
Specific weight = 9790
Kinematic viscosity v = 1.00x10^-4m²/s
Dynamic viscosity u = 1.00x10^-3
Density p = 998kg/m²
Reynolds number
= 0.15x1.5/1.00x10^-4
= 225000
S = 5
5x1.5/225000^1/2
= 0.0158
= 15.8mm
Resistance on one side of plate
F = 0.664x1x1.0x10^-3x0.15x225000^1/2
= 0.04724N
Total resistance
= 2N
= 2x0.04724
= 0.0944N