Answer:
G = 0.424
Explanation:
Ds = ( 0.278tr * V ) + (0.278 * V²)/ ( 19.6* ( f ± G))
Where Ds = stopping sight distance = 415miles = 126.5m
G = absolute grade road
V = velocity of vehicle = 52miles/hr
f = friction = 0 because the road is wet
tr = standard perception / reaction time = 2.5s
So therefore:
Substituting to get G
We have
2479.4G = 705.6G + 751.72
1773.8G = 751.72
G = 751.72/1773.8
G = 0.424
Answer:
1. Yes.
2. Localized corrosion
Explanation:
Should she be worried about corrosion?
Yes, the engineer needs to be worried about corrosion as stainless steel has a lower resistance to corrosion, in other words, stainless steel corrodes faster than Titanium.
If so, what types of corrosion could take place?
The type of corrosion that takes place is called Localized corrosion. Localized corrosion occurs when a small part of a component experiences corrosion. In this case, the ball component of the femoral stem is made of stainless steel which will corrode faster than the other parts of the femoral stem which is made of Titanium.
Complete Question
Air at 40C flows over a 2 m long flat plate with a free stream velocity of 7m/s. Assume the width of the plate (into the paper) is 0.5 m. If the plate is at a co temperature of 100C,find:
The total heat transfer rate from the plate to the air
Answer:

Explanation:
From the question we are told that:
Air Temperature 
Length 
Velocity 
Width 
Constant temperature 
Generally the equation for Total heat Transfer is mathematically given by

Where
h=Convective heat transfer coefficient

Therefore




Answer:
hey if u repost this i can answer it u and u dont have to waste this much points but its super blury and not even able to read a single word