Answer:
The acceleration of the body, a = 2193 m/s²
Explanation:
Given,
The mass of the body, m = 0.3 kg
The force acting on the body, F = 657.9 N
The force acting on an object is proportional to the product of mass and acceleration of the body.
F = m x a
Therefore, the acceleration of the body is
a = F / m
= 657.9 N / 0.3 kg
= 2193 m/s²
Hence, the acceleration of the body, a = 2193 m/s²
Complete question:
The coordinate of a particle in meters is given by x(t)=1 6t- 3.0t³ , where the time tis in seconds. The
particle is momentarily at rest at t is:
Select one:
a. 9.3s
b. 1.3s
C. 0.75s
d.5.3s
e. 7.3s
Answer:
b. 1.3 s
Explanation:
Given;
position of the particle, x(t)=1 6t- 3.0t³
when the particle is at rest, the velocity is zero.
velocity = dx/dt
dx /dt = 16 - 9t²
16 - 9t² = 0
9t² = 16
t² = 16 /9
t = √(16 / 9)
t = 4/3
t = 1.3 s
Therefore, the particle is momentarily at rest at t = 1.3 s
Answer:
6 second
Explanation:
initial velocity of ball, u = 60 m/s
g = 10 m/s^2
Let the ball takes time t to reach at the maximum height
We know that at maximum height, the velocity of ball is zero.
v = 0 m/s
Use first equation of motion
v = u + gt
0 = 60 - 10 x t
t = 6 second
Thus, the ball takes 6 second to reach to maximum height.