1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
15

Example of moving properly for a push-up?

Physics
1 answer:
kondor19780726 [428]3 years ago
5 0
<span> but it has to be somewhere along the lines of your elbow bending to approximately a 90 degree angle </span>
You might be interested in
The rate an object is moving relative to a reference point is its
steposvetlana [31]

Answer:

B

speed.

Explanation:

hope it helps you

7 0
2 years ago
The attraction of liquid particles for a solid surface is due to ____.
White raven [17]
This attraction occurs from adhesion, also known as adsorption <span />
6 0
3 years ago
Read 2 more answers
A car travels up a hill at a constant speed of 38 km/h and returns down the hill at a constant speed of 66 km/h. Calculate the a
mojhsa [17]

Answer:

Average speed will be 48.23 km/h

Explanation:

Let the distance up to hill is = d km

Speed when car goes to hill = 38 km/h

So time required t=\frac{distance}{speed}=\frac{d}{38}hour

Speed when car return from hill = 66 km/h

So time required to return fro hill t=\frac{d}{66}h

Total time t_{total}=\frac{t}{38}+\frac{t}{66}

Total distance = d+d =2d

So average speed=\frac{total\ distance}{total\ time}=\frac{2d}{\frac{d}{38}+\frac{d}{66}}=48.23km/h

8 0
3 years ago
The volume electric charge density of a solid sphere is given by the following equation: The variable r denotes the distance fro
qwelly [4]

Answer:

62.8 μC

Explanation:

Here is the complete question

The volume electric charge density of a solid sphere is given by the following equation: ρ = (0.2 mC/m⁵)r²The variable r denotes the distance from the center of the sphere, in spherical coordinates. What is the net electric charge (in μC) of the sphere if the radius of the sphere is 0.5 m?

Solution

The total charge on the sphere Q = ∫∫∫ρdV where ρ = volume charge density = 0.2r² and dV = volume element in spherical coordinates = r²sinθdθdrdΦ

So,  Q =  ∫∫∫ρdV

Q =  ∫∫∫ρr²sinθdθdrdΦ

Q =  ∫∫∫(0.2r²)r²sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

We integrate from r = 0 to r = 0.5 m, θ = 0 to π and Φ = 0 to 2π

So, Q =  ∫∫∫0.2r⁴sinθdθdrdΦ

Q =  ∫∫∫0.2r⁴[∫sinθdθ]drdΦ

Q =  ∫∫0.2r⁴[-cosθ]drdΦ

Q =  ∫∫0.2r⁴-[cosπ - cos0]drdΦ

Q =  ∫∫∫0.2r⁴-[-1 - 1]drdΦ

Q =  ∫∫0.2r⁴-[- 2]drdΦ

Q =  ∫∫0.2r⁴(2)drdΦ

Q =  ∫∫0.4r⁴drdΦ

Q =  ∫0.4r⁴dr∫dΦ

Q =  ∫0.4r⁴dr[Φ]

Q =  ∫0.4r⁴dr[2π - 0]

Q =  ∫0.4r⁴dr[2π]

Q =  ∫0.8πr⁴dr

Q =  0.8π∫r⁴dr

Q =  0.8π[r⁵/5]

Q = 0.8π[(0.5 m)⁵/5 - (0 m)⁵/5]

Q = 0.8π[0.125 m⁵/5 - 0 m⁵/5]

Q = 0.8π[0.025 m⁵ - 0 m⁵]

Q = 0.8π[0.025 m⁵]

Q = (0.02π mC/m⁵) m⁵

Q = 0.0628 mC

Q = 0.0628 × 10⁻³ C

Q = 62.8 × 10⁻³ × 10⁻³ C

Q = 62.8 × 10⁻⁶ C

Q = 62.8 μC

3 0
3 years ago
Why does the large number of hydrogen atoms in the universe suggest that other elements?
lidiya [134]

Answer:

Explanation:

The abundance of the chemical elements is a measure of the occurrence of the chemical elements relative to all other elements in a given environment. Abundance is measured in one of three ways: by the mass-fraction (the same as weight fraction); by the mole-fraction (fraction of atoms by numerical count, or sometimes fraction of molecules in gases); or by the volume-fraction. Volume-fraction is a common abundance measure in mixed gases such as planetary atmospheres, and is similar in value to molecular mole-fraction for gas mixtures at relatively low densities and pressures, and ideal gas mixtures. Most abundance values in this article are given as mass-fractions.

For example, the abundance of oxygen in pure water can be measured in two ways: the mass fraction is about 89%, because that is the fraction of water's mass which is oxygen. However, the mole-fraction is about 33% because only 1 atom of 3 in water, H2O, is oxygen. As another example, looking at the mass-fraction abundance of hydrogen and helium in both the Universe as a whole and in the atmospheres of gas-giant planets such as Jupiter, it is 74% for hydrogen and 23–25% for helium; while the (atomic) mole-fraction for hydrogen is 92%, and for helium is 8%, in these environments. Changing the given environment to Jupiter's outer atmosphere, where hydrogen is diatomic while helium is not, changes the molecular mole-fraction (fraction of total gas molecules), as well as the fraction of atmosphere by volume, of hydrogen to about 86%, and of helium to 13%.[Note 1]

The abundance of chemical elements in the universe is dominated by the large amounts of hydrogen and helium which were produced in the Big Bang. Remaining elements, making up only about 2% of the universe, were largely produced by supernovae and certain red giant stars. Lithium, beryllium and boron are rare because although they are produced by nuclear fusion, they are then destroyed by other reactions in the stars.[1][2] The elements from carbon to iron are relatively more abundant in the universe because of the ease of making them in supernova nucleosynthesis. Elements of higher atomic number than iron (element 26) become progressively rarer in the universe, because they increasingly absorb stellar energy in their production. Also, elements with even atomic numbers are generally more common than their neighbors in the periodic table, due to favorable energetics of formation.

The abundance of elements in the Sun and outer planets is similar to that in the universe. Due to solar heating, the elements of Earth and the inner rocky planets of the Solar System have undergone an additional depletion of volatile hydrogen, helium, neon, nitrogen, and carbon (which volatilizes as methane). The crust, mantle, and core of the Earth show evidence of chemical segregation plus some sequestration by density. Lighter silicates of aluminum are found in the crust, with more magnesium silicate in the mantle, while metallic iron and nickel compose the core. The abundance of elements in specialized environments, such as atmospheres, or oceans, or the human body, are primarily a product of chemical interactions with the medium in which they reside.

4 0
3 years ago
Other questions:
  • A tennis ball, a bowling ball, and a feather are dropped from the top of a tall building at the same time. Consider what you hav
    12·2 answers
  • Four breakers of four different sizes are filled with water to the same depth. The temperature of the water is the same in all f
    8·1 answer
  • Find acceleration. Will give brainliest!
    8·2 answers
  • The Celsius tempersture scale is based on which of the following? a) vapor b) the human body c) the boiling point of air d) the
    13·2 answers
  • An object with a mass of 70 kilograms is supported at a height 8 meters above the ground. What's the potential energy of the obj
    14·1 answer
  • When the IMA is compared to AMA in the real world, _____.
    12·2 answers
  • Which of the following examples describes a situation where a car is experiencing a net force?
    13·1 answer
  • A 10 kg weight is suspended in the air by a strong cable. How much work is done, per unit time, in suspending the weight
    14·1 answer
  • A ball is thrown horizontally from the top of a building at 2 m/s. It takes 3 seconds to reach the ground. How far did the ball
    9·1 answer
  • What happens when a magnet passes through a closed loop of wire?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!