Answer:
3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679
Step-by-step explanation:
Answer:
<u><em>Rotation and Revolution are two motions of the earth.</em></u>
Step-by-step explanation:
The description is in the image below:
Answer: B. A quadrilateral that has diagonals that do not bisect each other.
Step-by-step explanation:
- A parallelogram is a quadrilateral whose opposite sides are equal or congruent and parallel. Also, the opposite sides in parallelogram are equal or congruent and the sum of two adjacent angles is 180 degrees.The diagonals of parallelogram bisect each other.
Therefore by the properties of parallelogram the choice that does NOT describe a parallelogram is " <em>A quadrilateral that has diagonals that do not bisect each other</em>.".
Sheila is incorrect! I think what she did is think the 38 was actually a 35, which WOULD of made her statement true, but since it's 38, she's very incorrect. Sheila should be using the quotient for the size of each piece. 38 divided by 5 is 7.6. The correct answer is 7.6 inches.
I'm going to assume the joint density function is

a. In order for
to be a proper probability density function, the integral over its support must be 1.

b. You get the marginal density
by integrating the joint density over all possible values of
:

c. We have

d. We have

and by definition of conditional probability,


e. We can find the expectation of
using the marginal distribution found earlier.
![E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E1xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac67%5Cint_0%5E1%282x%5E2%2Bx%29%5C%2C%5Cmathrm%20dx%3D%5Cboxed%7B%5Cfrac57%7D)
f. This part is cut off, but if you're supposed to find the expectation of
, there are several ways to do so.
- Compute the marginal density of
, then directly compute the expected value.

![\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac87)
- Compute the conditional density of
given
, then use the law of total expectation.

The law of total expectation says
![E[Y]=E[E[Y\mid X]]](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5BE%5BY%5Cmid%20X%5D%5D)
We have
![E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}](https://tex.z-dn.net/?f=E%5BY%5Cmid%20X%3Dx%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_%7BY%5Cmid%20X%7D%28y%5Cmid%20x%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac%7B6x%2B4%7D%7B6x%2B3%7D%3D1%2B%5Cfrac1%7B6x%2B3%7D)
![\implies E[Y\mid X]=1+\dfrac1{6X+3}](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5Cmid%20X%5D%3D1%2B%5Cdfrac1%7B6X%2B3%7D)
This random variable is undefined only when
which is outside the support of
, so we have
![E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5Cleft%5B1%2B%5Cdfrac1%7B6X%2B3%7D%5Cright%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cleft%281%2B%5Cfrac1%7B6x%2B3%7D%5Cright%29f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac87)