Answer:
I would go with 2
Explanation:
But i would also not go with my answer. Lol
I think this is correct, but I am not entirely certain.
Find the force constant of the spring:
F = - KX
(0 - 62.4) = -K(0.172m)
-362.791 = -K
362.791 N/m = K
Find the work done in stretching the spring:
W = (1/2)KX
W = (1/2)(362.791)(0.172m)
W = 31.2 J
Total resistance=R1+ R2= 6Ω
Voltage=12v
Current =
Current= 2A
In a series circuit, equal current passes through every resistance.
Answer is option A
Answer:
C) Frosted glass sheet
Explanation:
C) Frosted glass sheet
because it is Icy and slippery which make the ball move from its least distance
I hope you understand what it means
The de Broglie wavelength of a 0.56 kg ball moving with a constant velocity of 26 m/s is 4.55×10⁻³⁵ m.
<h3>De Broglie wavelength:</h3>
The wavelength that is incorporated with the moving object and it has the relation with the momentum of that object and mass of that object. It is inversely proportional to the momentum of that moving object.
λ=h/p
Where, λ is the de Broglie wavelength, h is the Plank constant, p is the momentum of the moving object.
Whereas, p=mv, m is the mass of the object and v is the velocity of the moving object.
Therefore, λ=h/(mv)
λ=(6.63×10⁻³⁴)/(0.56×26)
λ=4.55×10⁻³⁵ m.
The de Broglie wavelength associated with the object weight 0.56 kg moving with the velocity of 26 m/s is λ=4.55×10⁻³⁵ m.
Learn more about de Broglie wavelength on
brainly.com/question/15330461
#SPJ1