Answer:
Condensation.
Explanation:
The boiling point of water is much higher than that of either nitrogen or oxygen gas . So when the mixture is condensed to a temperature lower than
100°C , water vapor will come out first in the form of water leaving other
elements of mixture in gaseous phase. In this way, water vapor will get separated from others.
To solve this problem it is necessary to apply the concepts related to the Third Law of Kepler.
Kepler's third law tells us that the period is defined as

The given data are given with respect to known constants, for example the mass of the sun is

The radius between the earth and the sun is given by

From the mentioned star it is known that this is 8.2 time mass of sun and it is 6.2 times the distance between earth and the sun
Therefore:


Substituting in Kepler's third law:






Therefore the period of this star is 3.8years
The specific heat of the unknown substance with a mass of 0.158kg is 0.5478 J/g°C
HOW TO CALCULATE SPECIFIC HEAT CAPACITY:
The specific heat capacity of a substance can be calculated using the following formula:
Q = m × c × ∆T
Where;
- Q = quantity of heat absorbed (J)
- c = specific heat capacity (4.18 J/g°C)
- m = mass of substance
- ∆T = change in temperature (°C)
According to this question, 2,510.0 J of heat is required to heat the 0.158kg substance from 32.0°C to 61.0°C. The specific heat capacity can be calculated:
2510 = 158 × c × (61°C - 32°C)
2510 = 4582c
c = 2510 ÷ 4582
c = 0.5478 J/g°C
Therefore, the specific heat capacity of the unknown substance that has a mass of 0.158 kg is 0.5478 J/g°C.
Learn more about specific heat capacity at: brainly.com/question/2530523
Answer:
2.837% less than actual value.
Explanation:
Based on given information let's calculate our value.
S = Vxt = 331m/s x 5s = 1655m, that is the total distance that sound would travel in 5 seconds.
1mile = 1609.34meters.
percentage error is.

negative indicates less than actual value.