Answer:
The fireman will continue to descend, but with a constant speed.
Explanation:
In kinetic friction <em>(which is the case discussed here) </em>since the fireman is already in motion because of a certain force, once the frictional force matches the normal force, the fireman will stop accelerating and continue moving at a constant rate with the original speed he had. We will need a force greater than the normal force acting on the fireman to cause a deceleration.
We need to understand the difference between static friction and kinetic friction.
Static friction occurs in objects that are stationary, while kinetic friction occurs in objects that are already in motion.
In static friction, when the frictional force matches the weight or normal force of the object, the object remains stationary.
While in kinetic friction, when the frictional force matches the normal force, the object will stop accelerating. This is the case of the fireman sliding down the pole as discussed above.
The initial kinetic energy of the boat and its rider is

After Sam stops it, the final kinetic energy of the boat+rider is

because its final velocity is zero.
For the law of conservation of energy, the work done by Sam is the variation of kinetic energy of the system:

where the negative sign is due to the fact that the force Sam is applying goes against the direction of motion of the boat.
Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as



People have diffrent body builds and bone structure