Answer:
0.027 litres
Explanation:
volume of cube = length × base area
volume of cube = 0.03m ×( 0.03m × 0.03m )
volume of cube = 0.03m × ( 0.0009m^2 )
volume of cube = 0.000027m^3
1 cubic metre = 1000 litres
0.000027m^3 = 0.027 litres
Answer:
FAS concentration = 1.61*10^-4M
Explanation:
Beer Lambert's law relates the absorbance (A) of a substance to its concentration (c) as:

where ε = molar absorption coefficient
l = path length
A plot of 'A' vs 'c' gives a straight line with slope = εl
In addition absorbance (A) is related to % Transmittance (%T) as:
A = 2-log%T----(2)
For the FAS solution, the corresponding calibration fit is given as:
y = 3678(x) + 0.056
This implies that the slope = εl = 3678
It is given that %T = 25.6%

Based on equation(1):

Answer:
One way creativity is helpful to scientists is when they need to come up with a experiment or cure for something their imaginastion is very helpful. The reason for that is with creativity they could get answers much quicker!
Explanation:
When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J