First solve the moles of oxgen present in the compound
mol O = 6.93 g O ( 1 mol O / 16 g O )
mol O = 0.43 mol H
then solve the moles of hydrogen present
mol H = ( 7.36 - 6.93) g H ( 1 mol H / 1 g H)
mol H = 0.43 mol H
so the O and H are in the same mole content so the molecular formula would be OH, but the molar mass will not satisfy. so the answer would be
H2O2
Solid wood is a term most commonly used to distinguish between ordinary lumber and engineered wood, but it also refers to structures that do not have hollow spaces. Engineered wood products are manufactured by binding together wood strands, fibers, or veneers with adhesives to form a composite material.
Woof. Hope it helps!!! :) ....Reason*
The hydrogen deficiency index( HDI) of strigol is = 10
<h3>How to calculate HDI:</h3>
The hydrogen deficiency index is used to measure the number of degree of unsaturation of an organic compound.
Strigol is an example of an organic compound because it contains carbons and hydrogen.
To calculate the HDI using the molecular formula given (C19H20O6) the formula for HDI is used which is:

where C = number of carbon atoms = 19
n= number of nitrogen atoms = 0
h= number of hydrogen atoms = 20
X = number of halogen atoms = 0
Note that oxygen was not considered because it forms two bonds and has no impact.
There for HDI =

HDI=

HDI =

HDI = 10
Therefore, the hydrogen deficiency index of strigol is = 10
Learn more about unsaturated compounds here:
brainly.com/question/490531
Please be specific. Which umbrella?
The given equilibrium reaction is,

The given reaction is exothermic. So, heat energy will be a product. Therefore, decreasing the temperature (heat energy) would lead to the formation of more products as when the amount of energy which is a product is reduced, there is more room for the products to form.
Increasing the pressure would shift the equilibrium towards that side which has least number of moles of the gaseous substance. Hence, here increasing the pressure would lead to the formation of more products by shifting the equilibrium towards the right side.
Decreasing the volume would make the equilibrium shift towards the least number of moles of the gaseous substance. So, here in this equilibrium decreasing the volume would lead to the formation of more products.