An object with a velocity (v) of 9 m/s and a linear momentum (p) of 72 kg.m/s, has a mass (m) of 8 kg.
<h3>What is momentum?</h3>
In Newtonian mechanics, linear momentum, or simply momentum, is the product of the mass and velocity of an object.
It is a vector quantity, possessing a magnitude and a direction.
The mathematical expression for momentum is:
p = m . v
where,
- p is the linear momentum of the object.
- m is the mass of the object.
- v is the velocity of the object.
An object has a velocity (v) of 9 m/s and its linear momentum (p) is 72 kg.m/s. We will use the definition of linear momentum to calculate the mass of the object.
p = m . v
m = p / v
m = (72 kg.m/s) / (9 m/s) = 8 kg
An object with a velocity (v) of 9 m/s and a linear momentum (p) of 72 kg.m/s, has a mass (m) of 8 kg.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
l will help and if you get it correctly I will say you are welcome
Solids wall cement chat door tree
liquids oil ,water ,saline solution,soap
gases. tear gas meathian gas steam
Answer:
The effect of gravity on object makes objects stable and not floating in the air . It also makes any object thrown up to return back
Answer: The magnitude of the force exerted on the roof is 490522.5 N.
Explanation:
The given data is as follows.
Below the roof,
= 0 m/s
At top of the roof,
= 39 m/s
We assume that
is the pressure at lower surface of the roof and
be the pressure at upper surface of the roof.
Now, according to Bernoulli's theorem,


= ![0.5 \times 1.29 \times [(39)^{2} - (0)^{2}]](https://tex.z-dn.net/?f=0.5%20%5Ctimes%201.29%20%5Ctimes%20%5B%2839%29%5E%7B2%7D%20-%20%280%29%5E%7B2%7D%5D)
= 
= 981.045 Pa
Formula for net upward force of air exerted on the roof is as follows.
F = 
= 
= 490522.5 N
Therefore, we can conclude that the magnitude of the force exerted on the roof is 490522.5 N.