Answer:
The correct answer is Option A (decrease).
Explanation:
- According to Heisenberg's presumption of unpredictability, it's impossible to ascertain a quantum state viewpoint as well as momentum throughout tandem.
- Also, unless we have accurate estimations throughout the situation, we will have a decreased consistency throughout the velocity as well as vice versa though too.
Other given choices are not connected to the given query. Thus the above is the right answer.
P = IV
I = P/V = 30 / 120 = 0.25 A.
Current = 0.25A
Answer:
B. Maximum velocity of ejected electrons.
Explanation:
The ejection of electrons form a metal surface when the metal surface is exposed to a monochromatic electromagnetic wave of sufficiently short wavelength or higher frequency (or equivalently, above a threshold frequency), which leads to the enough energy of the wave to incident and get absorbed to the exposed surface emits electrons. This phenomenon is known as the photoelectric effect or photo-emission.
The minimum amount of energy required by a metal surface to eject an electron from its surface is called work function of metal surface.
The electrons thus emitted are called photo-electrons.
The current produced as a result is called photo electricity.
Energy of photon is given by:

where:
h = Planck's constant
frequency of the incident radiation.
Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.