Changes. :) I think... Whats your question
?
Im positive that the answer is b
Answer:
Explanation:
In 1789, Antoine Lavoisier published a list of 33 chemical elements. Although Lavoisier grouped the elements into gases, metals, non-metals, and earths, chemists spent the following century searching for a more precise classification scheme. In 1829, Johann Wolfgang Döbereiner observed that many of the elements could be grouped into triads (groups of three) based on their chemical properties. Lithium, sodium, and potassium, for example, were grouped together as being soft, reactive metals. Döbereiner also observed that, when arranged by atomic weight, the second member of each triad was roughly the average of the first and the third.[19] This became known as the Law of Triads.[20] German chemist Leopold Gmelin worked with this system, and by 1843 he had identified ten triads, three groups of four, and one group of five. Jean Baptiste Dumas published work in 1857 describing relationships between various groups of metals. Although various chemists were able to identify relationships between small groups of elements, they had yet to build one scheme that encompassed them all.[19]
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.