Answer:
D) The sound would travel the same speed, so it would take the same amount to time to return
Explanation:
The speed of sound in water is constant, decreasing the frequency will only serve to increase the wavelenght of the sound wave, it doesn't affect the speed of the Sound wave.
Speed of sound = Freq. X wavelenght
By equation of equilibrium and friction:
Fb = Kx = 15(0.175) = 2.625 kN.
The wedge is on the verge of moving right then slipping will
have to occur at both contact surfaces.
Fa = usNa = 0.35Na
Fb = 0.35Nb
Nb = 2.625 = 0; Nb = 2.625 kN
Nacos10 – 0.35Na sin 10 = 2.625 = 0
Na = 2.841 kN
P – (0.35 * 2.625) – 0.35 (2.841) cos 10 – 2.841 sin 10 = 0
P = 2.39 kN
Given:-
- Mass of the cart (m) = 35 kg
- Speed (consider Velocity) = 1.2 m/s
To Find: Momentum of the cart.
We know,
p = mv
where,
- p = Momentum,
- m = Mass &
- v = Velocity.
Thus,
p = (35 kg)(1.2 m/s)
→ p = 42 kg m/s (Ans.)
Conclusion:-
A. ☑️ 42 kilogram - metre per second.
The wavelength of a standing wave is 8.13 m.
<h3>What is a wavelength?</h3>
The distance between two successive troughs or crests is known as the wavelength. The peak of the wave is the highest point, while the trough is the lowest.
The wavelength is also defined as the distance between two locations in a wave that have the same oscillation phase.
The given data in the problem is;
String length(L)= 48.8 metere
Wavelength(λ)=?
The length of the wave having n nodes is found as;
L=nλ
Substitute the given value;
48.8 = 6λ
λ= 8.13 m
Hence, the wavelength of a standing wave is 8.13 m.
To learn more about the wavelength, refer to the link;
brainly.com/question/7143261
#SPJ1