The displacement of the train after 2.23 seconds is 25.4 m.
<h3>
Resultant velocity of the train</h3>
The resultant velocity of the train is calculated as follows;
R² = vi² + vf² - 2vivf cos(θ)
where;
- θ is the angle between the velocity = (90 - 51) + 37 = 76⁰
R² = 8.81² + 9.66² - 2(8.81 x 9.66) cos(76)
R² = 129.75
R = √129.75
R = 11.39 m/s
<h3>Displacement of the train</h3>
Δx = vt
Δx = 11.39 m/s x 2.23 s
Δx = 25.4 m
Thus, the displacement of the train after 2.23 seconds is 25.4 m.
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1
Answer:
The answer is below
Explanation:
The main difference between a liquid and a gas is that when a liquid is under pressure, its volume "won't change apparently. The reason is that the distance between the molecules of a liquid is relatively small, and the molecules of a liquid extensively withstand the compressive forces. This is similar to the distance between the molecules of a solid."