Answer:
2 m = E / c^2 where m is mass of electron
E = h v where v is the frequency ( nu) of the incident photon
E = h c / y where y is the incident wavelength (lambda)
2 m = h / (c y)
y = h / (2 m c) wavelength required
y = 6.62 * 10E-34 / (2 * 9.1 * 10E-31 * 3 * 10E8) m
y = 3.31 / 27.3 E-11 m
y = 1.21 E -12 m = .0121 Angstrom units
Answer:
Maximum height will be 
Explanation:
We have given initial velocity through which basketball is thrown 
Acceleration due to gravity 
At maximum height velocity will be zero
So final velocity v = 0 m /sec
According to third equation of motion 
( Negative sign is due to upward acceleration )

Answer:
A sled and its rider are moving at a speed of along a horizontal stretch of snow, as Figure 4.24a illustrates. The snow exerts a kinetic frictional force on the runners of the sled, so the sled slows down and eventually comes to a stop. The coefficient of kinetic friction is 0.050. What is the displacement x of the sled?
Answer:
Explanation:
Given
diameter of spacecraft 
radius 
Force of gravity
=mg
where m =mass of object
g=acceleration due to gravity on earth
Suppose v is the speed at which spacecraft is rotating so a net centripetal acceleration is acting on spacecraft which is given by





