Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.
It forms a protective and adaptive barrier around a cell and this keeps various bacterial and viral intruders out. They also help in keeping cell systems inside the cell. The shell absorbs viruses and bacteria for nutrients when they do not have a certain strand to get inside the cell or trick it otherwise. Hope this helped!
Answer: 
Explanation:
We have the following equation:

We have to find
this means we have to isolate it:


3
The amplitude of oscillations has no effect on their time period.
Answer:
Displacement will be 5m west
Distance would be 21m No direction