1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
13

What is the average velocity in the time interval 3 to 4 seconds

Physics
2 answers:
AlekseyPX3 years ago
7 0
Since the position doesn't change over that time, it's zero
iVinArrow [24]3 years ago
3 0

Answer: 0 it did not change.

You might be interested in
Describe, using the relevant physics, how moving a magnet near a [ 1 2 ] solenoid induces a voltage across it. How does the spee
Svetllana [295]

Answer:

Explanation:

Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.

According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

\Phi B = -\int{B} \, dA

The voltage is induced by the variation of the magnetic flux:

\epsilon = -N * \frac{d \Phi B}{dt}

Where

ε: electromotive fore

N: number of turns in the coil

ΦB: magnetic flux

Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.

Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.

5 0
3 years ago
Consider two insulating balls with evenly distributed equal and opposite charges on their surfaces, held with a certain distance
siniylev [52]

Answer:

interest point:

1) Point on the left side

2) Point within the radius r₁ of the first sphere

3) Point between the two spheres

4) point within the radius r₂ of the second sphere

5) Right side point

Explanation:

In this case, the total electric field is the vector sum of the electric fields of each sphere, to simplify the calculation on the line that joins the two spheres

       

We will call the sphere on the left 1 and it has a positive charge Q with radius r1, the sphere on the right is called 2 with charge -Q with radius r2. The total field is

          E_ {total} = E₁ + E₂

          E_{ total} = k \frac{Q}{x_1^2} + k  \frac{Q}{x_2^2}

the bold indicate vectors, where x₁ and x₂ are the distances from the center of each sphere. If the distance that separates the two spheres is d

          x₂ = x₁ -d

          E total = k  \frac{Q}{x_1^2} - k \frac{Q}{(x_1 - d)^2}

Let's analyze the field for various points of interest.

1) Point on the left side

in this case

            E_ {total} = k Q \ ( \frac{1}{x_1^2} - \frac{1}{(x_1 +d)2} )

            E_ {total} = k \frac{Q}{x_1^2}   ( 1 - \frac{1}{(1 + \frac{d}{x_1} )^2 } )

We have several interesting possibilities:

* We can see that as the point is further away the field is more similar to the field created by two point charges

* there is a point where the field is zero

            E_ {total} = 0

             x₁² =  (x₁ + d)²

           

2) Point within the radius r₁ of the first sphere.

In this case, according to Gauus' law, the charge is on the surface of the sphere at the point, there is no charge inside so this sphere has no electric field on its inner point

              E_ {total} = -k \frac{Q}{x_2^2} = -k \frac{Q}{((d-x_1)^2}

this expression holds for the points located at

                  -r₁ <x₁ <r₁

3) Point between the two spheres

                E_ {total} = k \frac{Q}{x_1^2} + k \frac{Q}{(d+x_1)^2}

This champ is always different from zero

4) point within the radius r₂ of the second sphere, as there is no charge inside, only the first sphere contributes

                  E_ {total} = + k \frac{Q}{(d-x_1)^2}+ k Q / (d-x1) 2

point range

                  -r₂ <x₂ <r₂

             

5) Right side point

            E_ {total} = k \frac{Q}{(x_2-d)^2} - k \frac{Q}{x_2^2}

             E_ {total} = - k \frac{Q}{x_2^2} ( 1- \frac{1}{(1- \frac{d}{x_2})^2 } )- k Q / x22 (1- 1 / (x1 + d) 2)

we have two possibilities

* as the distance increases the field looks more like the field created by two point charges

* there is a point where the field is zero

8 0
2 years ago
A child jumps on a trampoline. What causes the child to rise in the air?
nikdorinn [45]
Force causes him to go up                                                            
6 0
3 years ago
Read 2 more answers
So u see what had happened was i need help again..
liubo4ka [24]

first off lemme just say this is really easy man, just look at the directions

Blank #1: -23

Blank #2: 23

8 0
2 years ago
Frank has a paperclip. It has a mass of 12g and a volume of 3cm3. What is its density?​
Mkey [24]

Answer:

D = 4 g/cm³

Explanation:

Density = Mass / Volume

Step 1: Define

D = x

M = 12 g

V = 3 cm³

Step 2: Substitute

D = 12g/3 cm³

Step 3: Simplify

D = 4g / cm³

4 0
3 years ago
Other questions:
  • According to Coulomb’s Law, the force between two charged objects is related to _____. the distance separating them the mass of
    8·2 answers
  • A spring of force constant 285.0 N/m and unstretched length 0.230 m is stretched by two forces, pulling in opposite directions a
    14·1 answer
  • Describe the motionof an object that gas acceleration of 0 m/s
    9·1 answer
  • The number of tornado deaths in the United States in the 2000s was less than 40 percent the number that occurred in the 1950s, e
    9·1 answer
  • What is the energy of a photon of blue light with a wavelength of 460 nm?
    12·1 answer
  • A 20-kg block is held at rest on the inclined slope by a peg. A 2-kg pendulum starts at rest in a horizontal position when it is
    7·1 answer
  • Sunlight, with an intensity of 667 W / m², strikes a flat collecting surface perpendicularly and is totally absorbed. The area o
    13·1 answer
  • The process of examining a change in one variable in a model while assuming that all the other variables remain constant is call
    6·1 answer
  • Yoon Ki investigates electromagnetic induction by moving a bar magnet into a coil of wire. His experimental setup is shown.
    7·2 answers
  • A force of 9.6 N acts on a 5.1 kg object for 8.2 s. Calculate the object's change in velocity (in m/s).​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!