Answer:
D. 0.1
Explanation:
Using transformer equation,
N2/N1 = I1/I2................... Equation 1
Where N2 = secondary coil, N1 = primary coil, I1 = input current, I2 = output current.
make I2 the subject of the equation
I2 = I1/(N2/N1)............ Equation 2
From equation 2 above, For the output current of the secondary coil to be 10 times the input current, N2/N1 = 0.1
Hence the right option is D. 0.1
Explanation:
Given that,
Mass of the block, m = 12.2 kg
Initial velocity of the block, u = 6.65 m/s
The coefficient of kinetic friction, 
(a)The force of kinetic friction is given by :

mg is the normal force
So,

(b) Net force acting on the block in the horizontal direction,
f = ma
a is the acceleration of the block

(c) Let d is the distance covered by the block before coming to the rest. Using third equation of motion as follows :

Hence, this is the required solution.
Answer:

Explanation:
Since there's no external force beside gravity acting on the rod, we can use the law of energy conservation to calculate for the speed of rod center of gravity before hitting the surface.
Also as the rod is uniform and this, its center of gravity is at distance h/2 from the surface.




B) lowering the activation energy !
__________
hope it helps!