A battery and a banana are the same when considering energy:
A battery when connected to a device produces electro-chemical reactions and contains one or more cells. The same thing can be tried out with fruits also. There are many fruits which can be taken into account. A lemon shows less amount of voltage when seen through a multimeter rather than a banana which shows a higher voltage. This was because of the acid present in the a fully ripped banana. The acid is called ascorbic acid. This acid has a higher pH level than compared to the pH of the citric acid found in lemon.
This shows that a banana plant is not so expensive and reliable for the production of renewable energy and a battery is also inexpensive, reliable and stable.
Your answer is correct, I do not understand why it would be wrong.
The electron accepting tendency of an atom is known as the tendency of an atom to accept an electron. This is ranked on a scale of 0.7 to 3.98 and these species have the following values:
F: 3.98
O: 3.44
C: 2.55
Be: 1.57
Li: 0.98
Answer:
Answer:
The mole ratio of C₄H₁₀ and CO₂ is 2 : 8, which simplifies to 1 : 4.
Explanation:
The mole ratio is the relative proportion of the moles of products or reactants that participate in the reaction according to the chemical equation.
The chemical equation given is:
2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O
Once you check that the equation is balanced, you can set the mole ratios for all the reactants and products. The coefficients used in front of each reactant and product, in the balanced chemical equation, tells the mole ratios.
In this case, they are: 2 mol C₄H₁₀ : 13 mol O₂ : 8 mol CO₂ : 10 mol H₂O
Since you are asked about the mole ratio of C₄H₁₀ and CO₂ it is:
2 mol C₄H₁₀ : 8 mol CO₂ , which dividing by 2, simplifies to
1 mol C₄H₁₀ : 4 mol CO₂, or
1 : 2.
Explanation: