Answer:
Solid Osmium transition metal reacts with Oxygen gas to produce solid Osmium tetroxide.
Os(s) + 2O₂(g) -> OsO₄(s)
Explanation:
Osmium tetroxide is another way of writing Osmium (VIII) oxide.
Leaving powdered osmium exposed to air in a room will slowly create osmium tetroxide at room temperature.
Similarly, osmium tetroxide vapor will readily be released from a liquid solution at room temperature.
According to Boyle's Law, P1V1 = P2V2
where P1 and V1 are initial pressure and volume respectively. P2 and V2 are final pressure and volume receptively.
Given: P2 = 4 P1 and V1 = 10.0l
∴ V2 = 2.5 l
Answer: Final volume of system is 2.5 l
Answer:
The pressure increases to 3.5 atm.
Solution:
According to Gay-Lussac's Law, " At constant volume and mass the pressure of gas is directly proportional to the applied temperature".
For initial and final states of a gas the equation is,
P₁ / T₁ = P₂ / T₂
Solving for P₂,
P₂ = P₁ T₂ / T₁ ----- (1)
Data Given;
P₁ = 3 atm
T₁ = 27 °C + 273 = 300 K
T₂ = 77 °C + 273 = 350 K
Putting values in eq. 1,
P₂ = (3 atm × 350 K) ÷ 300 K
P₂ = 3.5 atm
Answer:
4 Co(s) + 3 O2(g) = 2 Co2O3(s)
Explanation: