Answer:
The radius of the circular plate is 0.774 m
Explanation:
Given;
distance between the parallel plates, d = 1.53 cm = 0.0153 m
electric field energy density between plates,
= 4.41 J/m³
Potential energy of the capacitor,
= 0.127 J
Energy density is given as;
![U_E = \frac{U_c}{V}](https://tex.z-dn.net/?f=U_E%20%3D%20%5Cfrac%7BU_c%7D%7BV%7D)
where;
V is volume
![V = \frac{U_c}{U_E} = \frac{0.127}{4.41} = 0.0288 \ m^3](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7BU_c%7D%7BU_E%7D%20%3D%20%5Cfrac%7B0.127%7D%7B4.41%7D%20%3D%200.0288%20%5C%20m%5E3)
Volume is given as;
V = Ad
where;
A is area
A = V / d
A = (0.0288) / (0.0153)
A = 1.882 m²
Area of circular plate is given as;
A = πr²
where;
r is the radius of the circular plate
![r = \sqrt{\frac{A}{\pi} } \\\\r = \sqrt{\frac{1.882}{\pi}}\\\\r = 0.774 \ m](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%7B%5Cfrac%7BA%7D%7B%5Cpi%7D%20%7D%20%5C%5C%5C%5Cr%20%3D%20%5Csqrt%7B%5Cfrac%7B1.882%7D%7B%5Cpi%7D%7D%5C%5C%5C%5Cr%20%3D%200.774%20%5C%20m)
Therefore, the radius of the circular plate is 0.774 m