It would last as long as the applied force continued, or until the accelerating object hit something.
Answer:
She will make the jump.
Explanation:
We have equation of motion ,
, s is the displacement, u is the initial velocity, a is the acceleration and t is the time.
First we will consider horizontal motion of stunt women
Displacement = 77 m, Initial velocity = 28 cos 15 = 27.05 m/s, acceleration = 0
Substituting

So she will cover 77 m in 2.85 seconds
Now considering vertical motion, up direction as positive
Initial velocity = 28 sin 15 = 7.25 m/s, acceleration =acceleration due to gravity = -9.8
, time = 2.85
Substituting

So at time 2.85 stunt women is 10.11 m below from starting position, far side is 25 m lower. So she will be at higher position.
So she will make the jump.
To solve this problem we will apply the concepts related to Ohm's law and Electric Power. By Ohm's law we know that resistance is equivalent to,

Here,
V = Voltage
I = Current
While the power is equivalent to the product between the current and the voltage, thus solving for the current we have,


Applying Ohm's law


Therefore the equivalent resistance of the light string is 
Answer:
It is very rare to see a solar eclipse from your home, because the Earth, Sun, and the moon need to align just right. Not everyone in the world can view a solar eclipse, only some area can. A solar eclipse is where the moon blocks out the sun. If you think about it: Let's say you live in Florida, U.S.A. You may see the moon coming in front of the sun, but if you lived in California or sumthin', the moon and the sun wouldn't be aligned to form a solar eclipse. It all depends on location... so it is rare to see one.