Answer:
The equation for rational function for given asymptotes is
f(x)=(-4x^2-6)/{(x-3)(x+3)}
Step-by-step explanation:
Given:
vertical Asymptotes at x=3 and x=-3 and a horizontal asymptote at
y=-4 i.e parallel to x axis.
To find:
equation of a rational function i.e function in form p/q
Solution;
the equation should be in form of p/q
Numerator :denominator.
Consider f(x)=g(x)/h(x)
as vertical asymptote are x=-3 and x=3
denominator becomes, (x-3) and (x+3)
for horizontal asymptote to exist there should have same degrees in numerator and denominator which of '2'
when g(x) will be degree '2' with -4 as coefficient and dont have any real.
zero.
By horizontal asymptote will be (-4x^2 -6)
The rational function is given by
f(x)=g(x)/h(x)
={(-4x^2-6)/(x-3)(x+3)}.
1 Expand
1.4t-0.4t+1.24=5.8
2 Simplify 1.4t-0.4t+1.241.4t−0.4t+1.24 to t+1.24t+1.24
t+1.24=5.8
3 Subtract 1.241.24 from both sides
t=5.8−1.24
4 Simplify 5.8-1.245.8−1.24 to 4.564.56
t=4.56
Answer:
7 miles per gallon
Step-by-step explanation:
Answer:
the rate of change of the water depth when the water depth is 10 ft is; 
Step-by-step explanation:
Given that:
the inverted conical water tank with a height of 20 ft and a radius of 8 ft is drained through a hole in the vertex (bottom) at a rate of 4 ft^3/sec.
We are meant to find the rate of change of the water depth when the water depth is 10 ft.
The diagrammatic expression below clearly interprets the question.
From the image below, assuming h = the depth of the tank at a time t and r = radius of the cone shaped at a time t
Then the similar triangles ΔOCD and ΔOAB is as follows:
( similar triangle property)


h = 2.5r

The volume of the water in the tank is represented by the equation:



The rate of change of the water depth is :

Since the water is drained through a hole in the vertex (bottom) at a rate of 4 ft^3/sec
Then,

Therefore,

the rate of change of the water at depth h = 10 ft is:




Thus, the rate of change of the water depth when the water depth is 10 ft is; 
Answer:
Josh sold all of his collectable baseball cards (n), for $2 each. After selling them all he counted his money and he had $18. How many baseball cards did Josh sell?