1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
2 years ago
9

Find the inverse of each function.

Mathematics
1 answer:
weeeeeb [17]2 years ago
4 0

The inverse of a function is the opposite of the function

<h3>How to determine the inverse functions</h3>

<u>1) y = log2 (3x)</u>

Swap the positions of x and y

x = \log_2(3y)

Apply the exponential rule

2^x = 3y

Make y the subject

y = \frac{2^x}3

Hence, the inverse function is: y = \frac{2^x}3

<u>2) y=log3(x-1)</u>

Swap x and y

x = \log_3(y - 1)

Apply exponent rule

3^x = y - 1

Make y the subject

y = 3^x + 1

Hence, the inverse function is: y = 3^x + 1

<u>3) y=-2log x</u>

Swap x and y

x=-2\log y

Divide both sides by -2

-0.5x=\log y

Apply exponent rule

y = 10^{-0.5x}

Hence, the inverse function is: y = 10^{-0.5x}

<u>4) y=log6(3x)</u>

Swap x and y

x = \log_6(3y)

Apply exponent rule

3y = 6^x

Make y the subject

y = \frac{6^x}{3}

Hence, the inverse function is: y = \frac{6^x}{3}

<u>5)y=log3(x+2)</u>

Swap x and y

x = \log_3(y + 2)

Apply exponent rule

y + 2 = 3^x

Make y the subject

y = 3^x - 2

Hence, the inverse function is: y = 3^x - 2

<u>6) y=log3(5^3)</u>

Swap x and y

x = \log_3(5^3)

Hence, the inverse function is: x = \log_3(5^3)

<u>7) y=6^x+5</u>

Swap x and y

x = 6^y + 5

Subtract 5 from both sides

6^y = x - 5

Apply logarithm

y = \log_6(x - 5)

Hence, the inverse function is: y = \log_6(x - 5)

<u>9) y=log3 2^x</u>

Swap x and y

x = \log_3(2^y)

Apply exponent rule

2^y = 3^x

Apply logarithm

y = \log_2(3^x)

Hence, the inverse function is: y = \log_2(3^x)

<u>10) y=3^x -7</u>

Swap x and y

x = 3^y - 7

Add 7 to both sides

3^y = x + 7

Apply logarithm

y = \log_3(x + 7)

Hence, the inverse function is: y = \log_3(x + 7)

Read more about inverse functions at:

brainly.com/question/14391067

You might be interested in
What is 6/30 as a decimal
stiv31 [10]
6/30 as a decimal is 0.2
This is because if you divide 30÷6, you will get 0.6

Hope this helps
5 0
4 years ago
Use the shell method to write and evaluate the definite integral that represents the volume of the solid generated by revolving
faust18 [17]

Answer:

Volume = \frac{384}{7}\pi

Step-by-step explanation:

Given (Missing Information):

y = x^\frac{3}{2}; y = 8; x=0

Required

Determine the volume

Using Shell Method:

V = 2\pi \int\limits^a_b {p(y)h(y)} \, dy

First solve for a and b.

y = x^\frac{3}{2} and y = 8

Substitute 8 for y

8 = x^\frac{3}{2}

Take 2/3 root of both sides

8^\frac{2}{3} = x^{\frac{3}{2}*\frac{2}{3}}

8^\frac{2}{3} = x

2^{3*\frac{2}{3}} = x

2^2 = x

4 =x

x = 4

This implies that:

a = 4

For x=0

This implies that:

b=0

So, we have:

V = 2\pi \int\limits^a_b {p(y)h(y)} \, dy

V = 2\pi \int\limits^4_0 {p(y)h(y)} \, dy

The volume of the solid becomes:

V = 2\pi \int\limits^4_0 {x(8 - x^{\frac{3}{2}}}) \, dx

Open bracket

V = 2\pi \int\limits^4_0 {8x - x.x^{\frac{3}{2}}} \, dx

V = 2\pi \int\limits^4_0 {8x - x^{\frac{2+3}{2}}} \, dx

V = 2\pi \int\limits^4_0 {8x - x^{\frac{5}{2}}} \, dx

Integrate

V = 2\pi  * [{\frac{8x^2}{2} - \frac{x^{1+\frac{5}{2}}}{1+\frac{5}{2}}]\vert^4_0

V = 2\pi  * [{4x^2 - \frac{x^{\frac{2+5}{2}}}{\frac{2+5}{2}}]\vert^4_0

V = 2\pi  * [{4x^2 - \frac{x^{\frac{7}{2}}}{\frac{7}{2}}]\vert^4_0

V = 2\pi  * [{4x^2 - \frac{2}{7}x^{\frac{7}{2}}]\vert^4_0

Substitute 4 and 0 for x

V = 2\pi  * ([{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}] - [{4*0^2 - \frac{2}{7}*0^{\frac{7}{2}}])

V = 2\pi  * ([{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}] - [0])

V = 2\pi  * [{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}]

V = 2\pi  * [{64 - \frac{2}{7}*2^2^{*\frac{7}{2}}]

V = 2\pi  * [{64 - \frac{2}{7}*2^7]

V = 2\pi  * [{64 - \frac{2}{7}*128]

V = 2\pi  * [{64 - \frac{2*128}{7}]

V = 2\pi  * [{64 - \frac{256}{7}]

Take LCM

V = 2\pi  * [\frac{64*7-256}{7}]

V = 2\pi  * [\frac{448-256}{7}]

V = 2\pi  * [\frac{192}{7}]

V = [\frac{2\pi  * 192}{7}]

V = \frac{\pi  * 384}{7}

V = \frac{384}{7}\pi

Hence, the required volume is:

Volume = \frac{384}{7}\pi

3 0
3 years ago
Shaniqua brings home $250 per week working 25 hours. She is able to save $30 of her earnings each week.
Shtirlitz [24]

The answer is clearly "chicken nugget"

7 0
3 years ago
Read 2 more answers
Please explain how to do this one as well ...
kirza4 [7]

Answer:

x = 13

Step-by-step explanation:

Step 1: Define

f(x) = (x - 1)/2

f(x) = 6

Step 2: Substitute and solve for <em>x</em>

6 = (x - 1)/2

12 = x - 1

x = 13

4 0
3 years ago
What is (-12x+6)+(4x-12)​
mafiozo [28]

Final Result :

     -2 • (4x + 3)

Processing ends successfully

6 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify the radical expression.
    10·1 answer
  • Increase 44 by 10%.
    14·1 answer
  • *10 POINTS*
    6·1 answer
  • Liam walks 2 kilometers every day. How far does Liam walk in 7 days?
    13·2 answers
  • Combine these to like terms to create an equivalent expression: 4z - (-3z)
    13·1 answer
  • What calculation can be used to find the value of y in the equation y^3=27
    14·2 answers
  • Given f(x) = 9x - 5 and g(x) = x^2 choose the expression for (f g) (x)
    14·2 answers
  • Y = 1/2x + 2<br> What is the slope?
    8·2 answers
  • 10. The dimensions of a triangular prism are shown in the diagram. 10 cm 10 cm www 8 cm 34 cm -12 cm What is the volume of the t
    9·1 answer
  • Could someone please help me quickly? What are the ratios for sin, cos, &amp; tan?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!