1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
2 years ago
10

Does the orbital period of a planet depend on the mass of the planet or on the mass of the star that it orbits?

Physics
1 answer:
jasenka [17]2 years ago
8 0

Answer:

The orbital period of a planet depends on the mass of the planet.

Explanation:

A less massive planet will take longer to complete one period than a more massive planet.

You might be interested in
A nonconducting sphere of diameter 10.0 cm carries charge distributed uniformly inside with charge density of +5.50 µC/m3 . A pr
VLD [36.1K]

Answer:

t = 2.58*10^-6 s

Explanation:

For a nonconducting sphere you have that the value of the electric field, depends of the region:

rR:\\\\E=k\frac{Q}{r^2}

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

R: radius of the sphere = 10.0/2 = 5.0cm=0.005m

In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

F=m_pa\\\\qE=m_pa\\\\k\frac{qQ}{r^2}=m_pa\\\\a=k\frac{qQ}{m_pr^2}

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

Q=\rho V=(5.5*10^{-6}C/m^3)(\frac{4}{3}\pi(0.05m)^3)=2.87*10^{-9}C\\\\a=(8.98*10^9Nm^2/C^2)\frac{(1.6*10^{-19}C)(2.87*10^{-9}C)}{(1.67*10^{-27}kg)(0.05m)^2}=9.87*10^{11}\frac{m}{s^2}

with this values of a you can use the following formula:

a=\frac{v-v_o}{t}\\\\t=\frac{v-v_o}{a}=\frac{2550*10^3m/s-0m/s}{9.87*10^{11}m/s^2}=2.58*10^{-6}s

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s

3 0
2 years ago
What body systems help these cells get the energy they need?
MakcuM [25]

The body systems that help cells get the energy they need are the digestive system and circulatory system. The first system is the digestive system because when you eat food, your body breaks it down using the stomach and other different parts of the digestive system.  The next one is the circulatory system because your blood carries the nutrients you acquired from food you digested to the cells throughout your body.

3 0
2 years ago
The kind of heat transfer that travels through space in electromagnetic waves is?
Masteriza [31]

Answer:

radiation!

Explanation:

7 0
2 years ago
Read 2 more answers
PLEASE HELP ME
posledela
Low levels of fecal coliform
5 0
3 years ago
Read 2 more answers
Water flows through a cast steel pipe (k = 50 W m.K, ε = 0.8) with an outer diameter of 104mm and 2 mm wall thickness. Calculate
masha68 [24]

Answer:

The heat loss per unit length is   \frac{Q}{L}   = 2981 W/m

Explanation:

From the question we are told that

     The outer diameter of the pipe is d = 104mm = \frac{104}{1000} = 0.104 m

     The thickness is  D = 2mm = \frac{2}{1000} = 0.002m  

      The temperature  of water is  T = 90^oC = 90 + 273 = 363K  

      The outside air temperature is T_a = -10^oC = -10 +273 = 263K

        The water side heat transfer coefficient is z_1 = 300 W/ m^2 \cdot K

       The  heat transfer coefficient is  z_2 = 20 W/m^2 \cdot K

The heat lost per unit length is mathematically represented as

           \frac{Q}{L}   = \frac{2 \pi (T - Ta)}{ \frac{ln [\frac{d}{D} ]}{z_1}  +  \frac{ln [\frac{d}{D} ]}{z_2}}

Substituting values

         \frac{Q}{L}   = \frac{2 * 3.142 (363 - 263)}{ \frac{ln [\frac{0.104}{0.002} ]}{300}  +  \frac{ln [\frac{0.104}{0.002} ]}{20}}

           \frac{Q}{L}   = \frac{628}{0.2107}

           \frac{Q}{L}   = 2981 W/m

6 0
3 years ago
Other questions:
  • Which statement correctly describes magnetic field lines?
    12·2 answers
  • A point charge of 4.0 µC is placed at a distance of 0.10 m from a hard rubber rod with an electric field of 1.0 × 103 . What is
    11·2 answers
  • What is the proper tool for cutting keyways or slots in metal?
    10·1 answer
  • Different masses are hung on a spring scale calibrated in newtons. The force exerted by gravity on 1.0 kg is shown in the image
    6·2 answers
  • (50 POINTS) Set the ball and the barrier about two feet apart on the table. Grasp both ends of the ruler. Push the ball using th
    12·2 answers
  • I NEED HELP PLEASE, THANKS! Light passes from air into water at an angle of 40.0° to the normal. What is the angle of refraction
    11·1 answer
  • Which of the following must ALWAYS be equal to the buoyant force on an object?
    8·1 answer
  • If g were 15 instead of 9.81, what would your quads look like?
    8·1 answer
  • Which of the following is an example of heat transfer by convection?
    13·1 answer
  • Một vận động viên ném tạ quay một cái đĩa nặng 1kg với bán
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!