I would say d if i was you
At the ridge, new crust forms by igneous intrusion and extrusion. Since hot rocks are in a more expanded state and then contract as they cool (as they spread away from the ridge), the midocean ridges stand up high above the surrounding seafloor. The seafloor depth increases with distance away from the midocean ridges.
Answer:
The nervous system handles the stress response, which, if overworked, can eventually lead to diseases ranging from high blood pressure to diabetes.
Explanation:
hope I helped
Answer:
μ = 0.125
Explanation:
To solve this problem, which is generally asked for the coefficient of friction, we will use the conservation of energy.
Let's start working on the ramp
starting point. Highest point of the ramp
Em₀ = U = m h y
final point. Lower part of the ramp, before entering the rough surface
= K = ½ m v²
as they indicate that there is no friction on the ramp
Em₀ = Em_{f}
m g y = ½ m v²
v = 
we calculate
v = √(2 9.8 0.25)
v = 2.21 m / s
in the rough part we use the relationship between work and kinetic energy
W = ΔK = K_{f} -K₀
as it stops the final kinetic energy is zero
W = -K₀
The work is done by the friction force, which opposes the movement
W = - fr x
friction force has the expression
fr = μ N
let's write Newton's second law for the vertical axis
N-W = 0
N = W = m g
we substitute
-μ m g x = - ½ m v²
μ = 
Let's calculate
μ = 
μ = 0.125
Answer:
Final speed of car = 12 m/s
Explanation:
We have equation of motion v = u + at, where v is final velocity, u is initial velocity, a is acceleration and t is time.
a) A cart starts from rest and accelerates at 4.0 m/s² for 5.0 s
v = ?
u = 0 m/s
a = 4.0 m/s²
t = 5 s
v = u + at = 0 + 4 x 5 = 20 m/s
b) Then maintains that velocity for 10 s
v = ?
u = 20 m/s
a = 0 m/s²
t = 10 s
v = u + at = 20 + 0 x 10 = 20 m/s
c) Then decelerates at the rate of 2.0 m/s² for 4.0 s
v = ?
u = 20 m/s
a = -2.0 m/s²
t = 4 s
v = u + at = 20 + -2 x 4 = 12 m/s
Final speed of car = 12 m/s