1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
7

The work done by an external force to move a -6.70 μc charge from point a to point b is 1.20×10−3 j .

Physics
2 answers:
Len [333]3 years ago
8 0

Answer:

108.66V

Explanation:

E = 1.20*10⁻³J

q = 6.70μC = 6.7*10⁻⁶C

V =?

K.E = 4.72 * 10⁻⁴J

E = q∇v

but there's difference in energy in moving the electron from point A to B. The electron has an initial energy of 4.72*10⁻⁴J.

E = Q - KE

E = 1.20*10⁻³ - 4.72*10⁻⁴ = 7.28*10⁻⁴J

E = q∇v

∇v = E / q

∇v = 7.28*10⁻⁴ / 6.7*10⁻⁶

∇v = 108.66V

the change in potential difference from point A to B was 108.66V

ASHA 777 [7]3 years ago
4 0

Answer:

108.7 V

Explanation:

Two forces are acting on the particle:

- The external force, whose work is W=1.20 \cdot 10^{-3}J

- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: W_e=q\Delta V

where

q is the charge

\Delta V is the potential difference

The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

K_f - K_i = W + W_e = W+q\Delta V

and since the charge starts from rest, K_i = 0, so the formula becomes

K_f = W+q\Delta V

In this problem, we have

W=1.20 \cdot 10^{-3}J is the work done by the external force

q=-6.70 \mu C=-6.7\cdot 10^{-6}C is the charge

K_f = 4.72\cdot 10^{-4}J is the final kinetic energy

Solving the formula for \Delta V, we find

\Delta V=\frac{K_f-W}{q}=\frac{4.72\cdot 10^{-4}J-1.2\cdot 10^{-3} J}{-6.7\cdot 10^{-6}C}=108.7 V

You might be interested in
An accelerating voltage of 2.47 x 10^3 V is applied to an electron gun, producing a beam of electrons originally traveling horiz
Dmitry [639]

Answer:

6.3445×10⁻¹⁶ m

Explanation:

E = Accelerating voltage = 2.47×10³ V

m = Mass of electron

Distance electron travels = 33.5 cm = 0.335 cm

E=\frac{mv^2}{2}\\\Rightarrow v=\sqrt{\frac{2E}{m}}\\\Rightarrow v=\sqrt{\frac{2\times 2470\times 1.6\times 10^{-19}}{9.11\times 10^{-31}}}\\\Rightarrow v=29455356.08671\ m/s

Deflection by Earth's Gravity

\Delta =\frac {gt^2}{2}

Now, Time = Distance/Velocity

\Delta =\frac {g\frac{s^2}{v^2}}{2}\\\Rightarrow \Delta =\frac{9.81\frac{0.335^2}{29455356.08671^2}}{2}\\\Rightarrow \Delta =6.3445\times 10^{-16}\ m

∴ Magnitude of the deflection on the screen caused by the Earth's gravitational field is 6.3445×10⁻¹⁶ m

3 0
3 years ago
When are the two days of equinox
galina1969 [7]
March 20 and September 22
5 0
3 years ago
Read 2 more answers
The mineral quartz has a chemical formula of SiO2. What is the formal name<br> for this compound?
lana66690 [7]

Answer:

Silicon Dioxide

3 0
3 years ago
Read 2 more answers
PLEASE ANSWER FAST!! A scientist put red blood cells in water that contained salt. Over time, the red blood cells burst. What is
Nitella [24]
It is most likely true that there was a lower concentration of salt in the water than in the cells because when blood cells are put in a hypotonic solution such as pure water, the little to no salt concentration in the water causes the cells to swell and burst. This would occur because the water would try to dilute the solution inside of the blood cell and which would, therefore, cause it to burst. Hope this helps! 
7 0
4 years ago
Read 2 more answers
5. An acrobat, starting from rest, swings freely on a trapeze of
34kurt

The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;

     a) The maximum speed is v = 4.89 m / s

     b) The maximum height is h = 1.22 m

The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.

               Em = K + U

Let's write the energy in two points.

Starting point. Highest part of the oscillation

            Em₀ = U = m g h

Final point. Lower part of the movement

            Em_f = K = ½ m v²

Energy is conserved.

            Emo = Em_f  

            m g h = ½ m v²

            v² = 2 gh

Let's use trigonometry to find the height, see attached.

         h = L - L cos θ

         h = L (1- cos θ)

They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.

         h = 3.7 (1- cos 48)

          h = 1.22 m

this  is the maximum height of the movement.

Let's calculate the velocity.  

          v= \sqrt{2 \ 9.8 \ 1.22}  

          v = 4.89 m / s

In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;

     a) The maximum speed is v = 4.89 m / s

     b) The maximum height is h = 1.22 m

Learn more here: brainly.com/question/13010190

5 0
3 years ago
Other questions:
  • What two elements are named after Dimitri Mendeleev?
    10·2 answers
  • What happens to the frequency of a wave if its energy increases?
    14·2 answers
  • Car A hits car B (initially at rest and of equal mass) frombehind while going 35 m/s. Immediately after the collision, car Bmove
    7·1 answer
  • How do you calculate density?
    11·1 answer
  • A ball is thrown horizontally from a height of 19 m and hits the ground with a speed that is five times its initial speed. What
    14·1 answer
  • 5. A ball weighing 10 kg rolls 200 m down a frictionless incline with a 50 degree angle to the horizontal. If the ball’s initial
    6·1 answer
  • Please help! im being timed!! urgent!
    12·1 answer
  • Suppose the maximum power delivered by a car's engine results in a force of 16000 N on the car by the road. In the absence of an
    15·1 answer
  • Physics acceleration
    12·1 answer
  • A ball is thrown straight upward at 10 m/s. Ideally (no air resistance), the ball will return to the thrower's hand with a speed
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!