We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³
The CEO determine which two sets execute
Answer: 2
Step-by-step explanation:
It is like you a=have 3 pencils and you give 1 to your friend how many will you have?
subtract 1 from 3
3-1=2
4/1 / 5/2 = 4/1 * 2/5 = 8/5
1 7/8 = 15/8
15/8 * 8/5 = 120/40 = 12/4 = 3 inches
shorter side should be 3 inches