Answer:
There are 165 ways to distribute the blackboards between the schools. If at least 1 blackboard goes to each school, then we only have 35 ways.
Step-by-step explanation:
Essentially, this is a problem of balls and sticks. The 8 identical blackboards can be represented as 8 balls, and you assign them to each school by using 3 sticks. Basically each school receives an amount of blackboards equivalent to the amount of balls between 2 sticks: The first school gets all the balls before the first stick, the second school gets all the balls between stick 1 and stick 2, the third school gets the balls between sticks 2 and 3 and the last school gets all remaining balls.
The problem reduces to take 11 consecutive spots which we will use to localize the balls and the sticks and select 3 places to put the sticks. The amount of ways to do this is
As a result, we have 165 ways to distribute the blackboards.
If each school needs at least 1 blackboard you can give 1 blackbooard to each of them first and distribute the remaining 4 the same way we did before. This time there will be 4 balls and 3 sticks, so we have to put 3 sticks in 7 spaces (if a school takes what it is between 2 sticks that doesnt have balls between, then that school only gets the first blackboard we assigned to it previously). The amount of ways to localize the sticks is
. Thus, there are only 35 ways to distribute the blackboards in this case.
Answer:
Step-by-step explanation:
We'll take this step by step. The equation is
![8-3\sqrt[5]{x^3}=-7](https://tex.z-dn.net/?f=8-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-7)
Looks like a hard mess to solve but it's actually quite simple, just do one thing at a time. First thing is to subtract 8 from both sides:
![-3\sqrt[5]{x^3}=-15](https://tex.z-dn.net/?f=-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-15)
The goal is to isolate the term with the x in it, so that means that the -3 has to go. Divide it away on both sides:
![\sqrt[5]{x^3}=5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%3D5)
Let's rewrite that radical into exponential form:

If we are going to solve for x, we need to multiply both sides by the reciprocal of the power:

On the left, multiplying the rational exponent by its reciprocal gets rid of the power completely. On the right, let's rewrite that back in radical form to solve it easier:
![x=\sqrt[3]{5^5}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B5%5E5%7D)
Let's group that radicad into groups of 3's now to make the simplifying easier:
because the cubed root of 5 cubed is just 5, so we can pull it out, leaving us with:
which is the same as:
![x=5\sqrt[3]{25}](https://tex.z-dn.net/?f=x%3D5%5Csqrt%5B3%5D%7B25%7D)
Answer:-3
Step-by-step explanation:
The expression is already in decimal form.
−3 slope
Answer: A
Step-by-step explanation:
Answer:
15 presents
Step-by-step explanation:
42 cm / 14 presents = 3 cm / 1
3cm / 1 presents = 45 / 15