So what you would want to do is plot the points in a graph, when you do so you line the points and it will give you a triangle.
So in conclusion it should be, a.) Isosceles
Answer:
2
Step-by-step explanation:
Answer:
i think b not to sure wait for more answers
Step-by-step explanation:
Answer:
<em>2</em><em>5</em><em>0</em><em> </em><em>in </em><em>sq</em>
Step-by-step explanation:
<em>Here's</em><em> the</em><em> solution</em>
<em>=</em><em>></em><em> </em><em>Base </em><em>=</em><em> </em><em>2</em><em>5</em><em>i</em><em>n</em><em> </em>
<em>=</em><em>></em><em> </em><em>Height</em><em> </em><em>=</em><em> </em><em>2</em><em>0</em><em>i</em><em>n</em>
<em>=</em><em>></em><em>We </em><em>need</em><em> to</em><em> </em><em>find </em><em>out</em><em> area</em><em> of</em><em> traingle</em>
<em>=</em><em>></em><em> </em><em>Area</em><em> of</em><em> </em><em>traingle </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em><em>*</em><em>base </em><em>*</em><em>height</em><em> </em>
<em>=</em><em>></em><em> </em><em>Area</em><em> </em><em>=</em><em> </em><em>1</em><em>/</em><em>2</em><em>*</em><em>2</em><em>0</em><em>*</em><em>2</em><em>5</em><em> </em>
<em>=</em><em>></em><em> </em><em>Area</em><em>=</em><em> </em><em>2</em><em>5</em><em>0</em><em> </em><em>in </em><em>sq</em>
<em>hope</em><em> it</em><em> helps</em><em>. </em><em> </em><em>^</em><em>_</em><em>^</em>
Determine whether each sequence is geometric? <br>
1) 60,48,36,24,12,…<br>
2) 3,6,12,24,48,…
balandron [24]
Answers:
- Not geometric
- Geometric
==================================================
Explanation for problem 1
Divide each term over its previous term.
- term2/term1 = 48/60 = 0.8
- term3/term2 = 36/48 = 0.75
We can stop here. The two results 0.8 and 0.75 do not match up, so we don't have a common ratio. Therefore, this sequence is <u>not</u> geometric. A geometric sequence must have each ratio of adjacent terms to be the same value throughout the list of numbers.
Side note: This sequence is arithmetic because we are subtracting the same amount each time (12) to generate each new term.
--------------------------------------
Explanation for problem 2
Like before, we'll divide each term by its previous term.
- term2/term1 = 6/3 = 2
- term3/term2 = 12/6 = 2
- term4/term3 = 24/12 = 2
- term5/term4 = 48/24 = 2
Each ratio found was 2. This is the common ratio and it shows we have a geometric sequence. It indicates that each term is twice that of its previous term. Eg: the jump from 12 to 24 is "times 2".