Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm
A single sodium ion will combine due to its charge on it
Na^+
The single sodium ion has total one positive charge on it. so it requires only one electron or can bond to one negative charge
in the given polyatomic anions
a) CO3^-2 : it has two negative charge. So it will react with two sodium ions
it will forms Na2CO3
b) PO4^-3 :it has three negative charge. So it will react with three sodium ions
it will forms Na3PO4
c) SO4^-2 : it has two negative charge. So it will react with two sodium ions
it will forms Na2SO4
d) NO3^-1: it has one negative charge. So it will react with one sodium ion
it will forms NaNO3
Hence the correct answer is
Nitrate ion will react with single sodium ion as
Na+ + NO3- ---> NaNO3
The Earth rotates on an imaginary line called an axis, which runs through Earth from the North Pole to the South Pole. The rotation of the Earth causes day
Answer:

Explanation:
When converting from moles to atoms, we must use Avogadro's number. This number tells us there are 6.022 * 10²³ atoms in 1 mole. We can multiply this number by the number of moles.
First, we must set up Avogadro's number as a ratio.

Next, multiply the number of moles by the ratio.

When we multiply, the moles of silicon will cancel.

Since the denominator of the fraction is 1, we can cancel it out too.


The original measurement (2.5 moles) has 2 significant figures (2 and 5). Therefore we must round to 2 sig figs. For this question, 2 sig figs is the tenth place.
The 0 in the hundredth place tells us to leave the 5 in the tenth place.

There are about <u>1.5 * 10²⁴ atoms of silicon.</u>