The final momentum of the body is equal to 120 Kg.m/s.
<h3>What is momentum?</h3>
Momentum can be described as the multiplication of the mass and velocity of an object. Momentum is a vector quantity as it carries magnitude and direction.
If m is an object's mass and v is its velocity then the object's momentum p is:
. The S.I. unit of measurement of momentum is kg⋅m/s, which is equivalent to the N.s.
Given the initial momentum of the body = Pi = 20 Kg.m/s
The force acting on the body, Pf = 25 N
The time, Δt = 4-0 = 4s
The Force is equal to the change in momentum: F ×Δt = ΔP
25 × 4 = P - 20
100 = P - 20
P = 100 + 20 = 120 Kg.m/s
Therefore, the final momentum of a body is 120 Kg.m/s.
Learn more about momentum, here:
brainly.com/question/4956182
#SPJ1
Answer:
A) T1 = 269.63 K
T2 = 192.59 K
B) W = -320 KJ
Explanation:
We are given;
Initial volume: V1 = 7 m³
Final Volume; V2 = 5 m³
Constant Pressure; P = 160 KPa
Mass; m = 2 kg
To find the initial and final temperatures, we will use the ideal gas formula;
T = PV/mR
Where R is gas constant of helium = R = 2.0769 kPa.m/kg
Thus;
Initial temperature; T1 = (160 × 7)/(2 × 2.0769) = 269.63 K
Final temperature; T2 = (160 × 5)/(2 × 2.0769) = 192.59 K
B) world one is given by the formula;
W = P(V2 - V1)
W = 160(5 - 7)
W = -320 KJ
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.
Since U=0,
h=1/2gt^2 (h= ut+1/2gt^2, U=0)
h=1/2*10*4*4
h=80m