1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
12

When Aditya pushes on Rachel and her bicycle, they accelerate at 0.22 m/s/s. If Aditya pushes on Rachel and her bicycle with twi

ce as much force, then her
acceleration will be?

A. 1/4 as much
B. 1/2 as much
C. twice as much
D. the same
Physics
1 answer:
lord [1]3 years ago
4 0
I think it’s D but I’m not sure
You might be interested in
Eric is creating a timeline of the formation of the solar system. Which sequence best describes the formation of the solar syste
vlada-n [284]

The answer is C. nebular are star nurseries. When the massive gas being collapsing in its own weight. Local areas of gas begin to coalesce under gravity. Due to enormous pressure, nuclear fusion begins and a protostar is formed. The protostar grows into the sun as more hydrogen fuses at the core. The planetesimal materials at the edges of the protostellar discs coalesce to form planets that orbit the star.

3 0
3 years ago
Read 2 more answers
If a 7 kg bowling ball is lifted 2 m into the air and dropped, what speed will it strike the ground? (
Naily [24]

Answer:

6.32m/s

Explanation:

note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²

okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!

when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)

now enough of the talking let solve....

so the ball was dropped .ie from rest to the ground through a distance of 2m,

the formula for calculating the distance if a body moving in a straight line is given by:

S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.

from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)

solving ....

we get t to be 0.632s

to find the speed we substitute t in the equation below:

V=u+at ,but since u=0

V=at =10•0.632=6.32m/s

therefore the speed the body uses to strike the ground is 6.32m/s

4 0
3 years ago
A slit of width 2.0 μm is used in a single slit experiment with light of wavelength 650 nm. If the intensity at the central maxi
Valentin [98]

Answer:

The intensity at 10° from the center is 3.06 × 10⁻⁴I₀

Explanation:

The intensity of light I = I₀(sinα/α)² where α = πasinθ/λ

I₀ = maximum intensity of light

a = slit width = 2.0 μm = 2.0 × 10⁻⁶ m

θ = angle at intensity point = 10°

λ = wavelength of light = 650 nm = 650 × 10⁻⁹ m

α = πasinθ/λ

= π(2.0 × 10⁻⁶ m)sin10°/650 × 10⁻⁹ m

= 1.0911/650 × 10³

= 0.001679 × 10³

= 1.679

Now, the intensity I is

I = I₀(sinα/α)²

= I₀(sin1.679/1.679)²

= I₀(0.0293/1.679)²

= 0.0175²I₀

= 0.0003063I₀

= 3.06 × 10⁻⁴I₀

So, the intensity at 10° from the center is 3.06 × 10⁻⁴I₀

5 0
3 years ago
A person is singing in the shower. They notice that as certain notes become very loud, the shower walls vibrate. Which statement
AysviL [449]

Answer:

the note is one of the harmonic frequencies for the shower.

I just took the quiz, this is correct. Hope this helps:)

Explanation:

8 0
3 years ago
A hoop and a disk with uniform mass distribution have the same radius but the total masses are not known. Can they both roll dow
ser-zykov [4K]

Answer:

Explanation:

radius of hoop and the radius of disk is same = R

Let the mass of hoop is M and the mass of disk is M'.

As they reach the bottom of teh surface in same time so they travel equal distance thus, they have same acceleration.

The acceleration is given by

a=\frac{gSin\theta }{1+\frac{I}{MR^{2}}}

As the acceleration is same so that the moment of inertia is also same.

Moment of inertia of disk = moment of inertia of hoop

1/2 x mass of disk x R² =  mass of hoop x R²

So, mass of disk = 2 x mass of hoop

Option (c) is correct.

5 0
3 years ago
Other questions:
  • Which do you think would stronger the gravitational interaction between an apple and earth or the gravitational interaction betw
    8·2 answers
  • Use the work–energy theorem to solve each of these problems. Then use Newton’s laws to check your answers. Neglect air resistanc
    9·1 answer
  • Calculate how much work you need to move the 130 N trunk to a ledge 2 m above.
    10·2 answers
  • "A 0.4 kg mass, attached to the end of a 0.75 m string, is whirled around in a circular horizontal path. If the maximum tension
    6·2 answers
  • A ball is thrown with an initial speed of 20m/s at an angle of 60 to the ground. If air resistance is negligible, what is the ba
    7·1 answer
  • What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius?
    14·1 answer
  • Helppppppppp
    10·2 answers
  • Which excerpt from The Number Devil best conveys that the author's purpose for writing is to entertain?
    9·2 answers
  • What is radioactivity?​
    9·2 answers
  • Thermal energy and temperature both relate to the amount of ______ energy of moving particles of matter.​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!